
APTS Statistical Computing: Lab 2

Anthony Lee

Here are some practical problems which aim to explore and reinforce some of the course material.

Numerical differentiation
In this question, let

f(x1, x2, x3) = (x1x2 sin(x3) + exp(x1x2))
x3

,

which is the same function investigated in the automatic differentiation section of the lecture notes.

Question 1. Use finite differencing to approximate the gradient of f at (x1, x2, x3) = (1, 2, π/2). Use all
values of h in {2−i : i ∈ {0, . . . , 60}}.

You may find it helpful to define functions of each xi separately, with the rest fixed to the relevant values in
x above, as suggested by the lecture notes. For example, we can define
f <- function(x) {

(x[1]*x[2]*sin(x[3])+exp(x[1]*x[2]))/x[3]
}

x <- c(1,2,pi/2)

f1 <- Vectorize(function(x1) {
f(c(x1,x[2:3]))

})

so that f1 is the function of x1 only, with (x2, x3) = (2, π/2). Note that we use the Vectorize function so
that we can input several values of x1, i.e. x1 and the output will be the corresponding values of f(x1, x2, x3).

Note that one can also use the pracma package’s grad function to compute gradients numerically. You may
need to install the package to run the following code.
pracma::grad(f,x)

## [1] 10.681278 5.340639 -3.805241

This function, according to the documentation, uses the central difference formula mentioned in the lecture
notes.

Numerical quadrature
Here we consider integrating a continuous function f using a composite rule.

We will initially look at integrating using a simple rule. The main idea is to approximate f using a degree
k − 1 interpolating polynomial pk−1. This involves evaluating f at k points x1, . . . , xk.

1



Polynomial interpolation
The interpolating polynomial is unique, has degree at most k − 1, and it is convenient to express it as a
Lagrange polynomial:

pk−1(x) :=
k∑

i=1
ℓi(x)f(xi),

where the ℓi are the Lagrange basis polynomials

ℓi(x) =
k∏

j=1,j ̸=i

x − xj

xi − xj
i ∈ {1, . . . , k}.

Question 2. Demonstrate empirically that if f is a degree k − 1 polynomial then one perfectly fits f using
any distinct x1, . . . , xk. Also demonstrate that if f is not a polynomial then the placement of the x1, . . . , xk

does matter.

The following code should be helpful.
construct.interpolating.polynomial <- function(f, xs) {

k <- length(xs)
fxs <- f(xs)
p <- function(x) {

value <- 0
for (i in 1:k) {

fi <- fxs[i]
zs <- xs[setdiff(1:k,i)]
li <- prod((x-zs)/(xs[i]-zs))
value <- value + fi*li

}
return(value)

}
return(p)

}

plot.polynomial.approximation <- function(f, xs, a, b) {
p <- construct.interpolating.polynomial(f, xs)
vs <- seq(a, b, length.out=500)
plot(vs, f(vs), type='l', xlab="x", ylab="black: f(x), red: p(x)")
points(xs, f(xs), pch=20)
lines(vs, vapply(vs, p, 0), col="red")

}

Polynomial integration
Now we use the fact that we can integrate pk−1 exactly. Hopefully this is close to the integral of f .

The main idea of the approximation is to write

2



∫ b

a

f(x)dx ≈
∫ b

a

pk−1(x)dx

=
∫ b

a

k∑
i=1

ℓi(x)f(xi)dx

=
k∑

i=1
f(xi)

∫ b

a

ℓi(x)dx

=
k∑

i=1
wif(xi),

where for i ∈ {1, . . . , k}, wi :=
∫ b

a
ℓi(x)dx and we recall that ℓi(x) =

∏k
j=1,j ̸=i

x−xj

xi−xj
.

We will consider the case where the interpolation points are a, (a + b)/2 and b, corresponding to k = 3. We
obtain the weights as

w1 = w2 = b − a

6 , w3 = 2(b − a)
3 ,

giving rise to the approximation∫ b

a

pk−1(x)dx = b − a

6

{
f(a) + 4f

(
a + b

2

)
+ f(b)

}
.

Question 3. Use the above to approximate the integral of cos over [−1, 1] and [−5, 5], and compare with the
true value

∫ b

a

cos(x)dx = sin(b) − sin(a).

Composite polynomial integration
We have a couple of options when the approximation is inaccurate. One is to increase k, but this leads to
quite complicated expressions and ultimately only makes sense for sufficiently smooth functions.

The alternative is to approximate the function f by different degree k − 1 polynomials in subintervals. That
is we write

f =
m∑

i=1
f · 1Ai =:

m∑
i=1

fi,

where the Ai partition [a, b] and in particular we can take Ai = [a + (i − 1)h, a + ih] with h = (b − a)/m.

Question 4. Use the above to approximate the integral of cos over [−5, 5] for different values of m, and
compare with the true value

∫ b

a

cos(x)dx = sin(b) − sin(a).

Of course, you can and should use robustly implemented algorithms in practice, if there is no reason to do
otherwise.
integrate(cos,-5,5)

## -1.917849 with absolute error < 1e-11

3



Importance sampling
We consider a simple Bayesian logistic regression problem with 7 predictors and an intercept. The model is

Y ∼ Bernoulli(p(xi; β)),

where
p(xi; β) = 1

1 + exp(−βT xi)
.

Below we generate the predictors.
set.seed(2024)
n <- 200
p <- 8
X <- cbind(1,matrix(rnorm(n*(p-1)),n,p-1))

Now we sample randomly a true coefficient vector and some responses.
beta.true <- rnorm(p)
beta.true

## [1] -0.2465327 1.0457681 -0.5950995 -2.4267081 1.0369776 1.6367101 -1.0683578
## [8] -1.5419420
ps <- 1/(1+exp(-X%*%beta.true))
ys <- as.numeric(runif(n) < ps)

We can perform maximum likelihood estimation using the glm.fit function as follows:
df <- data.frame(response=ys,predictors=X)
model <- glm.fit(X, ys,family=binomial(link='logit'),intercept=FALSE)

but for the sake of this lab let us instead try to approximate the posterior distribution assuming each
coefficient is a priori an independent standard normal random variable. That is, the prior distribution has
density

π0(β) =
p∏

i=1
N(βi; 0, 1),

so that the posterior distribution is

π(β) ∝ π0(β)L(β; x1:n, y1:n) = π0(β)
n∏

i=1
p(xi; β)yi{1 − p(xi; β)}1−yi .

We can find the maximum a posteriori estimate, as well as the Hessian matrix associated with the log-posterior
at this value of β as follows
log.prior <- function(beta) {

sum(dnorm(beta,log=TRUE))
}

log.likelihood <- function(beta) {
ps <- 1/(1+exp(-X%*%beta))
sum(ys*log(ps)+(1-ys)*log(1-ps))

}

log.posterior <- function(beta) {

4



log.prior(beta) + log.likelihood(beta)
}

optim.out <- optim(rep(0,p), log.posterior, method = "L-BFGS-B", hessian=TRUE, control=list(fnscale=-1))
H <- optim.out$hessian
beta.map <- optim.out$par
Sigma.approx <- solve(-H)
beta.map

## [1] -0.07185713 0.67251415 -0.53638139 -2.00813671 1.10551283 1.48005468
## [7] -0.95072434 -1.63515861
Sigma.approx

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0456296958 -0.004524148 -0.0018225182 0.004227274 0.0016661559
## [2,] -0.0045241480 0.052322902 -0.0027318041 -0.019747744 0.0126441307
## [3,] -0.0018225182 -0.002731804 0.0551743816 0.018495846 -0.0009274784
## [4,] 0.0042272744 -0.019747744 0.0184958461 0.102840364 -0.0239618059
## [5,] 0.0016661559 0.012644131 -0.0009274784 -0.023961806 0.0622587630
## [6,] 0.0003699451 0.023566146 -0.0175668308 -0.042344673 0.0211803012
## [7,] -0.0017093810 -0.013712325 -0.0003087388 0.024823573 -0.0145721982
## [8,] -0.0080932064 -0.007214051 0.0119883390 0.048323347 -0.0190354588
## [,6] [,7] [,8]
## [1,] 0.0003699451 -0.0017093810 -0.008093206
## [2,] 0.0235661460 -0.0137123247 -0.007214051
## [3,] -0.0175668308 -0.0003087388 0.011988339
## [4,] -0.0423446734 0.0248235732 0.048323347
## [5,] 0.0211803012 -0.0145721982 -0.019035459
## [6,] 0.0792770063 -0.0209594247 -0.034060687
## [7,] -0.0209594247 0.0600375171 0.011031647
## [8,] -0.0340606868 0.0110316469 0.083280055

The quantity beta.map is the MAP estimate and Sigma can be viewed as an estimate of the posterior
covariance. Indeed, if the Laplace approximation is accurate then the posterior is close to a N(βMAP, Σ)
distribution. We will see how this approximation can be used in importance sampling.

Question 5. Complete the body of the function is.gaussian so that bs is a matrix where each of the
N rows is a β sample of length p and ws contains the associated weights for each β. The weights should
sum to 1. The proposal distribution should be normal with mean mu and covariance matrix Sigma and the
log.target function computes the log posterior density up to a normalizing constant.

It should be helpful to know that if X ∼ N(µ, Σ) then X = µ + AZ where A is any matrix such that
AAT = Σ. The log density of N(µ, Σ) is

log N(x; µ, Σ) = C − 1
2 log det(Σ) − 1

2(x − µ)T Σ−1(x − µ),

where C is a constant.
is.gaussian <- function(log.target, mu, Sigma, N) {

p <- length(mu)
bs <- matrix(0,N,p)
log.weights <- rep(0,N)
###
### more code here
###

5



ws <- exp(log.weights-max(log.weights))
ws <- ws/sum(ws)
return(list(bs=bs,ws=ws,ess=1/sum(wsˆ2)))

}

You can test your code using the following function.
## approximates the mean and covariance matrix associated with the weighted
## samples in output
approx.mean.var <- function(output) {

p <- length(output$bs[1,])
bs <- output$bs
ws <- output$ws
ms <- rep(0,p)
for (i in 1:p) {

ms[i] <- sum(ws*bs[,i])
}
vs <- matrix(0,p,p)
for (i in 1:p) {

for (j in 1:p) {
vs[i,j] <- sum(ws*bs[,i]*bs[,j])-ms[i]*ms[j]

}
}
return(list(ms=ms,vs=vs))

}

test.mu <- c(1,2)
test.Sigma <- matrix(c(1,0.2,0.2,0.8),2,2)
test.Sigma.logdet <- determinant(test.Sigma,logarithm = TRUE)$modulus[1]
test.Sigma.inv <- solve(test.Sigma)
test.log.target <- function(b) {

-0.5*test.Sigma.logdet-0.5*t(b-test.mu)%*%test.Sigma.inv%*%(b-test.mu)
}

test.output <- is.gaussian(test.log.target, c(-1,1), matrix(c(2,-0.5,-0.5,2),2,2), 100000)
approx.mean.var(test.output)

## $ms
## [1] 0 0
##
## $vs
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0

Question 6. Now use your Gaussian importance sampling code to investigate the importance sampling
algorithms associated with different choices of µ and Σ. In particular:

• µ = 0, Σ = Ip

• µ = βMAP, Σ = Ip

• µ = βMAP, Σ = diag(Σapprox)
• µ = βMAP, Σ = Σapprox.

It is often useful to look at the effective sample size as a measure of the quality of the samples.

6


	Numerical differentiation
	Numerical quadrature
	Polynomial interpolation
	Polynomial integration
	Composite polynomial integration

	Importance sampling

