
Matrix Computation in Statistics

Matteo Fasiolo

1 / 35

Introduction
About myself:
▶ I am Matteo Fasiolo, a statistics lecturer in the School of

Mathematics from the University of Bristol
▶ My research is on non-linear regression modelling with

applications in the energy domain
▶ I attended APTS in 2011 and I enjoyed it very much!

About the unit:
▶ Lec 1: matrix computation in Statistics
▶ Lec 2: an introduction to numerical optimisation
▶ Lec 3: optimisation and numerical differentiation (A. Lee)
▶ Lec 4 and 5: numerical integration and Monte Carlo (A. Lee)

Lec 1: what can we cover in 90min?

Main objective is to introduce common methods and problems
encountered when dealing with matrices in a Statistical context.

2 / 35

The Linear Regression Problem

We will use linear regression as a running example.

It will be used to demonstrate several concepts and methods.

We have a response n-vector y and (n × p) design matrix X.

Consider the model
yi = XT

i β + ϵi,

with E(ϵi) = 0, var(ϵi) = σ2 and cov(ϵi, ϵj) = 0 if i ̸= j.

We can fit it by least squares:

β̂ = argmin
β

||y − Xβ||2.

3 / 35

The gradient w.r.t. β is

∇β||y − Xβ||2 = 2XT(y − Xβ),

and equating it to zero leads to the normal equations

XTXβ̂ = XTy, (1)

which, if XTX is invertible, has the well-known solution

β̂ = (XTX)−1XTy. (2)

Why does Equation 1 have its own name, given that Equation 2
gives us the estimator in closed-form?

4 / 35

From a theoretical point of view

XTXβ̂ = XTy, and β̂ = (XTX)−1XTy,

are equivalent (if XTX is invertible).

From a computational point of view they are not: the second
equations, seems to imply that we need to compute (XTX)−1.

Key message: Computing matrix inverses should be avoided
whenever possible!

We can often avoid inverting and get what we want (here, β̂) at:
▶ lower computational cost and
▶ with better numerical precision.

Here we will achieve this by using different matrix decompositions.

5 / 35

[1] The Cholesky Decomposition

Define Σ = XTX and assume that X is of full-rank p.

Then, Σ is (p × p) positive-definite (PD) matrix, that is

zTΣz > 0, for any z ∈ Rp.

PD matrices are the matrix analogue of positive real numbers.

Hence, we look for a matrix square-root of Σ, s.t. Σ = RTR.

To guarantee uniqueness we impose that R is upper-triangular.

Then it’s easy to see how to compute R.

6 / 35

Consider the p = 3 case R11 0 0
R12 R22 0
R13 R23 R33


 R11 R12 R13

0 R22 R23
0 0 R33

 =

 A11 A12 A13
A12 A22 A23
A13 A23 A33


Solving each row in turn:

A11 = R11
2

A12 = R11R12

A13 = R11R13

A22 = R2
12 + R22

2

A23 = R12R13 + R22R23

...

So it’s easy to compute R. See notes for general formulas.

Cost is O(p3), short for 1
3p3 + 2

3p (for instance).
7 / 35

Back to the normal equations

XTXβ̂ = XTy,

Plug in XTX = RTR to get

RTRβ̂ = XTy,

or
β̂ = (RTR)−1XTy = R−1R−TXTy

Have we made any progress relative to β̂ = (XTX)−1XTy?

Worst thing would be to compute R−1 (at O(p3) cost) and then:

1. β̂ = (R−1(R−TXT))y at O(np2) + O(np2) + O(np) OR

2. β̂ = ((R−1R−T)XT)y at O(p3) + O(np2) + O(np) OR
(default)

3. β̂ = R−1(R−T(XTy)) at O(np) + O(p2) + O(p2) cost.
8 / 35

Instead, we should first compute z = XTy and plug in

β̂ = R−1R−TXTy = R−1R−Tz.

Let’s focus on z̃ = R−Tz, which is the solution of RTz̃ = z.

RT is lower-triangular so the system we are trying to solve is: R11 0 0
R12 R22 0
R13 R23 R33


 z̃1

z̃2
z̃3

 =

 z1
z2
z3


which can be solved at O(p2) cost by forward-substitution

R11z̃1 = z1

R12z̃1 + R22z̃2 = z2

R13z̃1 + R23z̃2 + R33z̃3 = z3

9 / 35

Now we plug z̃ = R−Tz in

β̂ = R−1R−Tz = R−1z̃,

and we use back-substitution to solve Rβ̂ = z̃ for β̂.

Summarising the solution to normal equations XTXβ̂ = XTy:

1. Compute XTX at O(np2) and XTy at O(np) cost;

2. Cholesky decomposition XTX = RTR at O(p3) cost;

3. Forward- and back-substitution at O(p2) cost each.

In step 2: inverting XTX is also O(p3) but with larger constant
and less precision (error in β̂ is larger).

Objection: for n ≫ p computing XTX is dominant cost so choice
inversion vs Cholesky unimportant (computationally).

10 / 35

But XTX is a Lev 3 Basic Linear Algebra Subprogram (BLAS).

Very efficient implementations of Level 3 operations is provided by
numerical linear algebra libraries such as LAPACK and OpenBLAS.

To see what you are using in R do:
sessionInfo()
Matrix products: default
BLAS: /lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

These are called when you do, e.g., t(X) %*% X in R.

So computing XTX might be faster than inverting or Cholesky
decomposing it.

Further, XTX is easier to parallelise.

11 / 35

Cholesky Demonstration in R
Simulate data from yi = β0 + β1xi + β2x2

i + ϵi:
set.seed(1)
n <- 100
x <- runif(n)
X <- cbind(1, x, x^2)
beta <- c(1, 1, 1)
y <- X %*% beta + rnorm(n)

Then, to fit the model we do:
XtX <- t(X) %*% X # Tip: crossprod(X) is faster

(R <- chol(XtX))

x
10 5.178471 3.3905117

x 0 2.662435 2.6977307
0 0.000000 0.6541115

12 / 35

z <- t(X) %*% y

z_tilde <- forwardsolve(t(R), z)

beta_hat <- backsolve(R, z_tilde)

Compare with lm function:
cbind(beta_hat, lm(y ~ X - 1)$coef)

[,1] [,2]
X 0.7843701 0.7843701
Xx 1.5104773 1.5104773
X 0.8044581 0.8044581

But do not expect exactly the same results:
max(abs(beta_hat - lm(y ~ X - 1)$coef))

[1] 1.354472e-14

13 / 35

A Further Example on the Cholesky Decomposition

Consider the squared Mahalanobis distance in p dimensions

distΣ(x1, x2) = (x1 − x2)TΣ−1(x1 − x2).

For fixed Σ we want to compute distΣ(x1, x2) for any x1 and x2.

Why not just compute Σ−1 once, and Σ−1(x1 − x2) at O(2p2)?

By inverting Σ−1 you lose accuracy and Cholesky is more efficient.

Instead, we compute Σ = RTR once, so Σ−1 = R−1R−T, then:

1. Compute z = R−T(x1 − x2) by forward-substit at O(1
2p2);

2. Compute distΣ(x1, x2) = zTz.

So Cholesky is 4 times faster under sequential computation.

Sample applies when computing β̂ for different y and fixed X.

14 / 35

[2] Fitting Linear Models via the Eigen-Decomposition

Any symmetric (p × p) matrix, A can be written as

A = UΛUT (3)

where UTU = UUT = I and Λ is a diagonal, with Λii = λi.

By convention the eigen-values are decreasing, λi ≥ λi+1.

This is the eigen- or spectral decomposition of A.

If all eigen-values are (≥) > 0 then A is positive (semi-)definite and

xTAx > 0, for any x ∈ Rp.

Note: eigen-decomposition is complex to compute and costs O(p3).

15 / 35

For a positive definite A, this provides a matrix square-root

A = UΛUT = U
√

Λ
√

ΛUT = U
√

ΛUTU
√

ΛUT =
√

A
√

A.

The inverse of A is easily computed

A−1 = UΛ−1UT,

assuming no eigen-value is zero.

Number of λi ≠ 0 is matrix rank, if none is zero then A is full-rank.

Back to linear regression problem.

16 / 35

If X is full-rank, then XTX is pos. def. and we can compute

β̂ = (XTX)−1XTy, → β̂ = UΛ−1UTz.

Doing β̂ = UΛ−1UTz involves:

1. z′ = UTz (rotation);

2. z′′
i = λ−1

i z′
i (rescaling);

3. β̂ = Uz′′ (counter-rotation).

We have a problem if λi = 0!!

Not a surprise: An indefinite symmetric matrix is not invertible.

What if λi ≈ 0, that is A = XTX is almost indefinite?

17 / 35

Assume distinct λ1, . . . , λp−1 ∈ [0.5, 1], λp = O(ϵ) with 0 < ϵ ≪ 1.

Assume ϵ is precision of our machine.

That is, computer represents numbers one part in ϵ−1.

I.e. 1 and 1 + z are the same number if |z| < ϵ.

Similarly, x and x + z are the same number if |z| < |x|ϵ.

In R:
(eps <- .Machine$double.eps)

[1] 2.220446e-16
1 + eps == 1

[1] FALSE
1 + eps/2 == 1

[1] TRUE
18 / 35

Let u1, u2, . . . , up be the eigen-vectors of A.

Consider simple problem, we want to solve

Ax = u1

with solution x = u1 (but we ignore this!).

We can compute it by

x = UΛ−1UTu1,

were first step is u′
1 = UTu1 = (1, 0, 0, . . . , 0)T (in theory).

But, in practice, we obtain

u′
1 = UTu1 = (1 + e1, e2, e3, . . . , ep)T,

where assume that size of errors e1, . . . , ep is O(ϵ), or oϵ.

Next: How will these errors propagate to the solution x?

19 / 35

When computing

x = UΛ−1UTu1 = UΛ−1u′
1,

with u′
1 = (1 + oϵ, oϵ, oϵ, . . . , oϵ)T, next step is

u′′
1 = Λ−1u′

1 =


λ−1

1
. . .

λ−1
p




1 + oϵ

oϵ

. . .
oϵ

 =


λ−1

1 (1 + oϵ)
λ−1

2 oϵ

. . .
λ−1

p oϵ

 ≈


λ−1

1
0
. . .
1

 .

Recall λ1 = 1 so

x = Uu′′
1 = λ−1

1 u1 + up = u1 + up ̸= u1, ||x||2 = 2 (very wrong!)

If instead we assume 0 < λ1 ≪ 1 then

x = λ−1
1 u1 + up ≈ λ−1

1 u1.

20 / 35

Condition number κ = |λ1|/|λp| determines error in solution to:

Ax = u1.

If κ ≈ 1/ϵ then we’ll have problems and system is ill-conditioned.

Note that problem occurs when solving Ax = uk, k = 1, . . . , p − 1.

Solution to Ax = up is fine (check it!).

Problem affects solution to generic system

Ax = z,

because we can write z =
∑

k wkuk and

x = A−1z = UΛ−1UT ∑
k

wk uk =
∑

k
wkUΛ−1UTuk.

In linear regression case x = β, A = XTX and z = XTy.

21 / 35

Note that high κ does not imply that there is no hope.

Let D be diagonal with very high κ:
(D <- matrix(c(1e16, 0, 0, 1), 2, 2))

[,1] [,2]
[1,] 1e+16 0
[2,] 0e+00 1
lambda <- eigen(D)$values

lambda[1]/lambda[2]

[1] 1e+16
solve(D)
Error in solve.default...
system is computationally singular...

But inverse D−1 or solution to Dx = y are easy!

22 / 35

Condition number extends beyond square matrices and
eigen-values.

In general it quantifies sensitivity of a function to errors in its input.

Large condition number means that the function amplifies errors.

Definition of the condition number depends on the choice of norm.

Looking at κ motivates approach to linear regression that does not
compute XTX in

XTXβ̂ = XTy.

23 / 35

Back to regression problem
set.seed(1)
n <- 100
x <- runif(n)
X <- cbind(1, x, x^2)

Let’s look at some condition numbers
XtX <- crossprod(X)
kappa(XtX)

[1] 866.1662
kappa(X)

[1] 28.86055
kappa(X)^2

[1] 832.9311

So κ(XTX) ≈ κ(X)2: Working with XTX can become a problem.
24 / 35

Let’s shift our covariate x:
xs <- x + 100
Xs <- cbind(1, xs, xs^2)
XtXs <- crossprod(Xs)

Fit should stay the same: Xβ̂ = XSβ̂
S (check it analytically).

But:
kappa(Xs)

[1] 1596137602
kappa(XtXs)

[1] 2.225929e+18

Q1: How do we compute κ(X)?

Q2: Can we avoid decomposing XTX, and decompose X directly?

25 / 35

[3] The Singular Value Decomposition

If X is (n × p) matrix then its SVD decomposition is

X = UDVT

where
▶ U is a (n × p) matrix with orthogonal columns
▶ V is a (p × p) orthogonal matrix
▶ D is a (p × p) diagonal matrix

Singular values d1 ≥ d2 ≥ · · · ≥ dp are diagonal elements of D.

Each di is equal to
√

λi(XTX).

Condition number of X is κ(X) = di
dp

=
√

κ(XTX).

Can we solve least squares problem using SVD?

26 / 35

Back to normal equations

(XTX)−1XTy = (VDUTUDVT)−1VDUTy
= (VD2VT)−1VDUTy
= V−TD−2V−1VDUTy
= VD−2DUTy
= VD−1UTy

where VD−1U has same κ as X:
kappa(X)

[1] 28.86055
d <- svd(X)$d
d[1] / d[3]

[1] 26.43029

27 / 35

SVD(X) more accurate than Cholesky(XTX), but O(np2) vs O(p3).

Objection: XTX costs O(np2)! But recall L3 BLAS efficiency…
n <- 100000; p <- 10
X <- matrix(rnorm(n*p), n, p)
XtX <- crossprod(X)

library(microbenchmark)
microbenchmark(XtX = crossprod(X),

chol = chol(XtX),
eig = eigen(XtX, symmetric = TRUE),
svd = svd(X),
times = 10)

Unit: microseconds
expr min lq mean median uq max neval
XtX 2453.233 2656.532 2735.1213 2710.5325 2804.938 3139.813 10
chol 7.410 18.030 27.8788 29.9935 33.776 50.158 10
eig 53.779 62.969 326.4207 109.1420 127.781 2424.595 10
svd 30670.809 32693.951 34450.2833 34556.6020 35719.945 38369.014 10

28 / 35

In n = p scenario:
n <- 1000; p <- 1000
X <- matrix(rnorm(n*p), n, p)
XtX <- crossprod(X)

microbenchmark(XtX = crossprod(X),
chol = chol(XtX),
eig = eigen(XtX, symmetric = TRUE),
svd = svd(X),
times = 10)

Unit: milliseconds
expr min lq mean median uq max neval
XtX 29.26937 29.39607 33.81674 29.55714 30.55472 68.39915 10
chol 13.45008 13.56710 13.91465 13.71956 13.93872 15.18513 10
eig 241.76111 242.77174 245.73050 245.84178 246.54577 252.63474 10
svd 606.10923 606.99428 624.72142 618.80716 630.25739 673.93428 10

Can we have the accuracy of SVD(X) without paying the full price?
29 / 35

[4] The QR decomposition
If X is (n × p) matrix then its QR decomposition is

X = QR,

where
▶ Q is (n × p) with orthogonal columns
▶ R is (p × p) upper triangular

Like SVD, it costs O(np2) but usually 1/3 of SVD.

To solve least squares do:

β̂ = (XTX)−1XTy = (RTQTQR)−1RTQTy
= (RTR)−1RTQTy
= R−1R−TRTQTy
= R−1QTy.

30 / 35

Note that
XTX = RTQTQR = RTR,

so R factor of QR(X) is Cholesky factor of XTX.

What did we gain? Why compute Cholesky via expensive QR? Let:
▶ R be the true Cholesky factor
▶ R̂Ch be the output of QR on X
▶ R̂QR be the output of Chol on XTX.

Each approach has an error, that is

R̂T
ChR̂Ch = XTX + ECh,

R̂T
QRR̂QR = XTX + EQR,

but QR is more accurate, that is ||EQR|| < ||ECh||.

This is because QR works with X which has a lower κ.

31 / 35

Smaller error in R̂QR leads to smaller error in β̂.

Further, if X is ill-conditioned, Chol(XTX) breaks before QR(X).
set.seed(1)
n <- 100
x <- runif(n)
xs <- x + 1e7
Xs <- cbind(1, xs, xs^2)
XtXs <- crossprod(Xs)

Then
C <- chol(XtXs)
Error in chol.default(XtXs) :
the leading minor of order 3 is not positive

while
QR <- qr(Xs)

still works.
32 / 35

n <- 100000; p <- 10 # n >> p
X <- matrix(rnorm(n*p), n, p); XtX <- crossprod(X)

microbenchmark(XtX = crossprod(X),
chol = chol(XtX),
eig = eigen(XtX, symmetric = TRUE),
svd = svd(X),
qr = qr(X), times = 10)

Unit: microseconds
expr min lq mean median uq max neval
XtX 2733.012 2818.613 2876.6381 2864.1405 2953.997 2996.895 10
chol 10.506 19.770 32.8223 33.8465 39.668 63.950 10
eig 51.397 111.058 115.0525 129.9285 134.261 138.956 10
svd 26491.693 28449.205 29363.4988 29053.6610 29985.220 32211.930 10
qr 10404.237 10831.122 15913.3023 11125.3920 11770.592 57146.216 10

So QR slower than Cholesky/Eigen but faster than SVD.

QR is what stats::lm() uses.
33 / 35

n <- 1000; p <- 1000 # n = p
X <- matrix(rnorm(n*p), n, p); XtX <- crossprod(X)

microbenchmark(XtX = crossprod(X),
chol = chol(XtX),
eig = eigen(XtX, symmetric = TRUE),
svd = svd(X),
qr = qr(X), times = 10)

Unit: milliseconds
expr min lq mean median uq max neval
XtX 29.29536 29.53522 31.05656 29.88605 30.45376 39.53110 10
chol 13.48713 13.52293 18.17425 14.50770 15.03922 51.08291 10
eig 238.13905 239.07331 254.09407 244.87891 264.24811 297.47238 10
svd 619.60280 623.08426 658.68510 642.44102 710.35909 725.36185 10
qr 220.74870 226.27763 240.71120 237.40329 258.84939 274.04048 10

Here QR faster than SVD and competitive with XTX + eigen.

For n ≈ p QR might offer more accuracy with some extra cost.
34 / 35

Conclusions
We used linear example to illustrate matrix computation.

Key message I: don’t invert matrices unless you really have to.

In linear regression, you lose accuracy and do more computation.

Key message II: conditional number quantifies error propagation.

Key message III: tradeoff between accuracy and computing time.

On computing time, consider the scenario: n ≫ p, n ≈ p…

Order of computation O(np2) vs O(p3) is not the whole story.

You need to consider also:
▶ software (BLAS, compiled vs interpreted language, etc)
▶ parallelisation opportunities
▶ hardware (GPU vs CPU)

35 / 35

