Matrix Computation in Statistics

Matteo Fasiolo

Introduction

About myself:

- I am Matteo Fasiolo, a statistics lecturer in the School of Mathematics from the University of Bristol
- My research is on non-linear regression modelling with applications in the energy domain
- I attended APTS in 2011 and I enjoyed it very much!

About the unit:

- Lec 1: matrix computation in Statistics
- Lec 2: an introduction to numerical optimisation
- ► Lec 3: optimisation and numerical differentiation (A. Lee)
- Lec 4 and 5: numerical integration and Monte Carlo (A. Lee)

Lec 1: what can we cover in 90min?

Main objective is to introduce common methods and problems encountered when dealing with matrices in a Statistical context.

The Linear Regression Problem

We will use linear regression as a running example.

It will be used to demonstrate several concepts and methods.

We have a response *n*-vector \mathbf{y} and $(n \times p)$ design matrix \mathbf{X} . Consider the model

$$y_i = \mathbf{X}_i^\mathsf{T} \boldsymbol{\beta} + \epsilon_i,$$

with $\mathbb{E}(\epsilon_i) = 0$, $var(\epsilon_i) = \sigma^2$ and $cov(\epsilon_i, \epsilon_j) = 0$ if $i \neq j$. We can fit it by least squares:

$$\hat{oldsymbol{eta}} = \mathop{\mathrm{argmin}}_{eta} || \mathbf{y} - \mathbf{X} oldsymbol{eta} ||^2.$$

The gradient w.r.t. β is

$$\nabla_{\beta} ||\mathbf{y} - \mathbf{X}\beta||^2 = 2\mathbf{X}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\beta),$$

and equating it to zero leads to the normal equations

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}^{\mathsf{T}}\mathbf{y},\tag{1}$$

which, if $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, has the well-known solution

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$
 (2)

Why does Equation 1 have its own name, given that Equation 2 gives us the estimator in closed-form?

From a theoretical point of view

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{oldsymbol{eta}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}, \ \ \text{and} \ \ \hat{oldsymbol{eta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y},$$

are equivalent (if $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible).

From a computational point of view they are not: the second equations, seems to imply that we need to compute $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$.

Key message: Computing matrix inverses should be avoided whenever possible!

We can often avoid inverting and get what we want (here, \hat{eta}) at:

lower computational cost and

• with **better numerical precision**.

Here we will achieve this by using different matrix decompositions.

[1] The Cholesky Decomposition

Define $\mathbf{\Sigma} = \mathbf{X}^{\mathsf{T}}\mathbf{X}$ and assume that \mathbf{X} is of full-rank p. Then, $\mathbf{\Sigma}$ is $(p \times p)$ positive-definite (PD) matrix, that is $\mathbf{z}^{\mathsf{T}}\mathbf{\Sigma}\mathbf{z} > 0$, for any $\mathbf{z} \in \mathbb{R}^{p}$.

PD matrices are the matrix analogue of positive real numbers. Hence, we look for a matrix square-root of Σ , s.t. $\Sigma = \mathbf{R}^{\mathsf{T}}\mathbf{R}$. To guarantee uniqueness we impose that \mathbf{R} is upper-triangular. Then it's easy to see how to compute \mathbf{R} . Consider the p = 3 case

$$\begin{pmatrix} R_{11} & 0 & 0 \\ R_{12} & R_{22} & 0 \\ R_{13} & R_{23} & R_{33} \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{12} & A_{22} & A_{23} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$

Solving each row in turn:

$$A_{11} = R_{11}^{2}$$

$$A_{12} = R_{11}R_{12}$$

$$A_{13} = R_{11}R_{13}$$

$$A_{22} = R_{12}^{2} + R_{22}^{2}$$

$$A_{23} = R_{12}R_{13} + R_{22}R_{23}$$

So it's easy to compute **R**. See notes for general formulas. Cost is $O(p^3)$, short for $\frac{1}{3}p^3 + \frac{2}{3}p$ (for instance).

. . .

Back to the normal equations

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}^{\mathsf{T}}\mathbf{y},$$

Plug in $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{R}^{\mathsf{T}}\mathbf{R}$ to get

$$\mathbf{R}^{\mathsf{T}}\mathbf{R}\hat{\boldsymbol{\beta}} = \mathbf{X}^{\mathsf{T}}\mathbf{y},$$

or

$$\hat{\boldsymbol{\beta}} = (\mathbf{R}^{\mathsf{T}}\mathbf{R})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{R}^{-1}\mathbf{R}^{-\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Have we made any progress relative to $\hat{eta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}?$

Worst thing would be to compute \mathbf{R}^{-1} (at $O(p^3)$ cost) and then:

1.
$$\hat{eta} = (\mathbf{R}^{-1}(\mathbf{R}^{-\mathsf{T}}\mathbf{X}^{\mathsf{T}}))\mathbf{y}$$
 at $\mathit{O}(np^2) + \mathit{O}(np^2) + \mathit{O}(np)$ OR

2.
$$\hat{\boldsymbol{\beta}} = ((\mathbf{R}^{-1}\mathbf{R}^{-\mathsf{T}})\mathbf{X}^{\mathsf{T}})\mathbf{y}$$
 at $O(p^3) + O(np^2) + O(np)$ OR (default)

3.
$$\hat{\boldsymbol{\beta}} = \mathbf{R}^{-1}(\mathbf{R}^{-\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{y}))$$
 at $O(np) + O(p^2) + O(p^2)$ cost.

Instead, we should first compute $\mathbf{z} = \mathbf{X}^{\mathsf{T}} \mathbf{y}$ and plug in

$$\hat{oldsymbol{eta}} = {f R}^{-1} {f R}^{-{\sf T}} {f X}^{{\sf T}} {f y} = {f R}^{-1} {f R}^{-{\sf T}} {f z}$$

Let's focus on $\tilde{z} = R^{-T}z$, which is the solution of $R^{T}\tilde{z} = z$.

 \mathbf{R}^{T} is lower-triangular so the system we are trying to solve is:

$$\begin{pmatrix} R_{11} & 0 & 0 \\ R_{12} & R_{22} & 0 \\ R_{13} & R_{23} & R_{33} \end{pmatrix} \begin{pmatrix} \tilde{z}_1 \\ \tilde{z}_2 \\ \tilde{z}_3 \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}$$

which can be solved at $O(p^2)$ cost by forward-substitution

$$R_{11}\tilde{z}_1 = z_1$$

$$R_{12}\tilde{z}_1 + R_{22}\tilde{z}_2 = z_2$$

$$R_{13}\tilde{z}_1 + R_{23}\tilde{z}_2 + R_{33}\tilde{z}_3 = z_3$$

Now we plug $\tilde{z} = \mathbf{R}^{-\mathsf{T}} \mathbf{z}$ in

$$\hat{\boldsymbol{\beta}} = \mathbf{R}^{-1}\mathbf{R}^{-\mathsf{T}}\mathbf{z} = \mathbf{R}^{-1}\tilde{\mathbf{z}},$$

and we use back-substitution to solve $\mathbf{R}\hat{\boldsymbol{\beta}} = \tilde{\mathbf{z}}$ for $\hat{\boldsymbol{\beta}}$.

Summarising the solution to normal equations $\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$:

- 1. Compute $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ at $O(np^2)$ and $\mathbf{X}^{\mathsf{T}}\mathbf{y}$ at O(np) cost;
- 2. Cholesky decomposition $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{R}^{\mathsf{T}}\mathbf{R}$ at $O(p^3)$ cost;
- 3. Forward- and back-substitution at $O(p^2)$ cost each.

In step 2: inverting $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is also $O(p^3)$ but with larger constant and less precision (error in $\hat{\beta}$ is larger).

Objection: for $n \gg p$ computing $\mathbf{X}^T \mathbf{X}$ is dominant cost so choice inversion vs Cholesky unimportant (computationally).

But $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is a Lev 3 Basic Linear Algebra Subprogram (BLAS).

Very efficient implementations of Level 3 operations is provided by numerical linear algebra libraries such as LAPACK and OpenBLAS.

To see what you are using in R do:

```
sessionInfo()
Matrix products: default
BLAS: /lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
```

These are called when you do, e.g., t(X) %*% X in R.

So computing $\mathbf{X}^T \mathbf{X}$ might be faster than inverting or Cholesky decomposing it.

Further, $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is easier to parallelise.

Cholesky Demonstration in R

Simulate data from $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$:

```
set.seed(1)
n <- 100
x <- runif(n)
X <- cbind(1, x, x<sup>2</sup>)
beta <- c(1, 1, 1)
y <- X %*% beta + rnorm(n)</pre>
```

Then, to fit the model we do:

XtX <- t(X) %*% X # Tip: crossprod(X) is faster

($R \leftarrow chol(XtX)$)

```
x
10 5.178471 3.3905117
x 0 2.662435 2.6977307
0 0.000000 0.6541115
```

z <- t(X) %*% y

z_tilde <- forwardsolve(t(R), z)</pre>

beta_hat <- backsolve(R, z_tilde)</pre>

Compare with 1m function:

cbind(beta_hat, lm(y ~ X - 1)\$coef)

[,1] [,2] X 0.7843701 0.7843701 Xx 1.5104773 1.5104773 X 0.8044581 0.8044581

But do not expect exactly the same results:

 $max(abs(beta_hat - lm(y ~ X - 1)$coef))$

[1] 1.354472e-14

A Further Example on the Cholesky Decomposition

Consider the squared Mahalanobis distance in p dimensions

$$\mathsf{dist}_{\boldsymbol{\Sigma}}(\boldsymbol{\mathsf{x}}_1,\boldsymbol{\mathsf{x}}_2) = (\boldsymbol{\mathsf{x}}_1 - \boldsymbol{\mathsf{x}}_2)^\mathsf{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mathsf{x}}_1 - \boldsymbol{\mathsf{x}}_2).$$

For fixed Σ we want to compute dist_{Σ}($\mathbf{x}_1, \mathbf{x}_2$) for any \mathbf{x}_1 and \mathbf{x}_2 . Why not just compute Σ^{-1} once, and $\Sigma^{-1}(\mathbf{x}_1 - \mathbf{x}_2)$ at $O(2p^2)$? By inverting Σ^{-1} you lose accuracy and Cholesky is more efficient. Instead, we compute $\Sigma = \mathbf{R}^T \mathbf{R}$ once, so $\Sigma^{-1} = \mathbf{R}^{-1} \mathbf{R}^{-T}$, then:

- 1. Compute $\mathbf{z} = \mathbf{R}^{-\mathsf{T}}(\mathbf{x}_1 \mathbf{x}_2)$ by forward-substit at $O(\frac{1}{2}p^2)$;
- 2. Compute dist_{Σ}($\mathbf{x}_1, \mathbf{x}_2$) = $\mathbf{z}^T \mathbf{z}$.

So Cholesky is 4 times faster **under sequential computation**. Sample applies when computing $\hat{\beta}$ for different **y** and fixed **X**. [2] Fitting Linear Models via the Eigen-Decomposition

Any symmetric $(p \times p)$ matrix, **A** can be written as

$$\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\mathsf{T}} \tag{3}$$

where $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I}$ and $\mathbf{\Lambda}$ is a diagonal, with $\mathbf{\Lambda}_{ii} = \lambda_i$.

By convention the eigen-values are decreasing, $\lambda_i \geq \lambda_{i+1}$.

This is the eigen- or spectral decomposition of A.

If all eigen-values are $(\geq) > 0$ then **A** is positive (semi-)definite and

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} > 0$$
, for any $\mathbf{x} \in \mathbb{R}^{p}$.

Note: eigen-decomposition is complex to compute and costs $O(p^3)$.

For a positive definite A, this provides a matrix square-root

 $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}} = \mathbf{U} \sqrt{\mathbf{\Lambda}} \sqrt{\mathbf{\Lambda}} \mathbf{U}^{\mathsf{T}} = \mathbf{U} \sqrt{\mathbf{\Lambda}} \mathbf{U}^{\mathsf{T}} \mathbf{U} \sqrt{\mathbf{\Lambda}} \mathbf{U}^{\mathsf{T}} = \sqrt{\mathbf{A}} \sqrt{\mathbf{A}}.$

The inverse of **A** is easily computed

$$\mathbf{A}^{-1} = \mathbf{U} \mathbf{\Lambda}^{-1} \mathbf{U}^{\mathsf{T}},$$

assuming no eigen-value is zero.

Number of $\lambda_i \neq 0$ is matrix rank, if none is zero then **A** is full-rank.

Back to linear regression problem.

If **X** is full-rank, then $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is pos. def. and we can compute

$$\hat{oldsymbol{eta}} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}, \hspace{1em} o \hspace{1em} \hat{oldsymbol{eta}} = \mathbf{U}\mathbf{\Lambda}^{-1}\mathbf{U}^\mathsf{T}\mathbf{z}.$$

Doing $\hat{\boldsymbol{\beta}} = \mathbf{U} \mathbf{\Lambda}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{z}$ involves: 1. $\mathbf{z}' = \mathbf{U}^{\mathsf{T}} \mathbf{z}$ (rotation); 2. $z_i'' = \lambda_i^{-1} z_i'$ (rescaling); 3. $\hat{\boldsymbol{\beta}} = \mathbf{U} \mathbf{z}''$ (counter-rotation).

We have a problem if $\lambda_i = 0!!$

Not a surprise: An indefinite symmetric matrix is not invertible. What if $\lambda_i \approx 0$, that is $\mathbf{A} = \mathbf{X}^T \mathbf{X}$ is almost indefinite? Assume distinct $\lambda_1, \ldots, \lambda_{p-1} \in [0.5, 1]$, $\lambda_p = O(\epsilon)$ with $0 < \epsilon \ll 1$.

Assume ϵ is precision of our machine.

That is, computer represents numbers one part in ϵ^{-1} .

I.e. 1 and 1 + z are the same number if $|z| < \epsilon$.

Similarly, x and x + z are the same number if $|z| < |x|\epsilon$.

In R:

(eps <- .Machine\$double.eps)</pre>

[1] 2.220446e-16

1 + eps == 1

[1] FALSE

1 + eps/2 == 1

[1] TRUE

Let $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p$ be the eigen-vectors of **A**.

Consider simple problem, we want to solve

$$Ax = u_1$$

with solution $\mathbf{x} = \mathbf{u}_1$ (but we ignore this!).

We can compute it by

$$\mathbf{x} = \mathbf{U} \mathbf{\Lambda}^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{u}_1,$$

were first step is $\mathbf{u}'_1 = \mathbf{U}^{\mathsf{T}}\mathbf{u}_1 = (1, 0, 0, \dots, 0)^{\mathsf{T}}$ (in theory). But, in practice, we obtain

$$\mathbf{u}_1' = \mathbf{U}^\mathsf{T} \mathbf{u}_1 = (1 + e_1, e_2, e_3, \dots, e_p)^\mathsf{T},$$

where assume that size of errors e_1, \ldots, e_p is $O(\epsilon)$, or o_{ϵ} .

Next: How will these errors propagate to the solution x?

When computing

$$\mathbf{x} = \mathbf{U}\mathbf{\Lambda}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{u}_1 = \mathbf{U}\mathbf{\Lambda}^{-1}\mathbf{u}_1',$$

with $\mathbf{u}_1' = (1 + o_\epsilon, o_\epsilon, o_\epsilon, \dots, o_\epsilon)^\mathsf{T}$, next step is

$$\mathbf{u}_{1}^{\prime\prime} = \mathbf{\Lambda}^{-1}\mathbf{u}_{1}^{\prime} = \begin{bmatrix} \lambda_{1}^{-1} & & \\ & \ddots & \\ & & \lambda_{p}^{-1} \end{bmatrix} \begin{bmatrix} 1 + o_{\epsilon} \\ o_{\epsilon} \\ \vdots \\ o_{\epsilon} \end{bmatrix} = \begin{bmatrix} \lambda_{1}^{-1}(1 + o_{\epsilon}) \\ \lambda_{2}^{-1}o_{\epsilon} \\ \vdots \\ \lambda_{p}^{-1}o_{\epsilon} \end{bmatrix} \approx \begin{bmatrix} \lambda_{1}^{-1} \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Recall $\lambda_1 = 1$ so

 $\mathbf{x} = \mathbf{U}\mathbf{u}_1'' = \lambda_1^{-1}\mathbf{u}_1 + \mathbf{u}_p = \mathbf{u}_1 + \mathbf{u}_p \neq \mathbf{u}_1, \quad ||\mathbf{x}||^2 = 2 \text{ (very wrong!)}$

If instead we assume 0 $<\lambda_1\ll 1$ then

$$\mathbf{x} = \lambda_1^{-1} \mathbf{u}_1 + \mathbf{u}_p \approx \lambda_1^{-1} \mathbf{u}_1.$$

Condition number $\kappa = |\lambda_1|/|\lambda_p|$ determines error in solution to:

$$\mathbf{A}\mathbf{x} = \mathbf{u}_1.$$

If $\kappa \approx 1/\epsilon$ then we'll have problems and system is **ill-conditioned**. Note that problem occurs when solving $\mathbf{A}\mathbf{x} = \mathbf{u}_k$, $k = 1, \dots, p-1$. Solution to $\mathbf{A}\mathbf{x} = \mathbf{u}_p$ is fine (check it!).

Problem affects solution to generic system

$$Ax = z$$
,

because we can write $\mathbf{z} = \sum_k w_k \mathbf{u}_k$ and

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{z} = \mathbf{U}\mathbf{\Lambda}^{-1}\mathbf{U}^{\mathsf{T}}\sum_{k}w_{k}\mathbf{u}_{k} = \sum_{k}w_{k}\mathbf{U}\mathbf{\Lambda}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{u}_{k}.$$

In linear regression case $\mathbf{x} = \beta$, $\mathbf{A} = \mathbf{X}^{\mathsf{T}}\mathbf{X}$ and $\mathbf{z} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$.

Note that high κ does not imply that there is no hope.

Let **D** be diagonal with very high κ :

```
( D <- matrix(c(1e16, 0, 0, 1), 2, 2) )
```

[,1] [,2] [1,] 1e+16 0 [2,] 0e+00 1

lambda <- eigen(D)\$values</pre>

lambda[1]/lambda[2]

[1] 1e+16

solve(D)

Error in solve.default...

system is computationally singular...

But inverse D^{-1} or solution to Dx = y are easy!

Condition number extends beyond square matrices and eigen-values.

In general it quantifies sensitivity of a function to errors in its input.

Large condition number means that the function amplifies errors.

Definition of the condition number depends on the choice of norm.

Looking at κ motivates approach to linear regression that does not compute $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ in

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\boldsymbol{eta}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}.$

Back to regression problem

set.seed(1)
n <- 100
x <- runif(n)
X <- cbind(1, x, x²)

Let's look at some condition numbers

```
XtX <- crossprod(X)
kappa(XtX)
```

[1] 866.1662

kappa(X)

[1] 28.86055

kappa(X)^2

[1] 832.9311

So $\kappa(\mathbf{X}^{\mathsf{T}}\mathbf{X}) \approx \kappa(\mathbf{X})^2$: Working with $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ can become a problem.

Let's shift our covariate x:

xs <- x + 100 Xs <- cbind(1, xs, xs²) XtXs <- crossprod(Xs)

Fit should stay the same: $\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}^{S}\hat{\boldsymbol{\beta}}^{S}$ (check it analytically). But:

kappa(Xs)

[1] 1596137602

kappa(XtXs)

- [1] 2.225929e+18
- Q1: How do we compute $\kappa(\mathbf{X})$?

Q2: Can we avoid decomposing $\mathbf{X}^{\mathsf{T}}\mathbf{X}$, and decompose \mathbf{X} directly?

[3] The Singular Value Decomposition

If **X** is $(n \times p)$ matrix then its SVD decomposition is

$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$

where

U is a (n × p) matrix with orthogonal columns
V is a (p × p) orthogonal matrix
D is a (p × p) diagonal matrix

Singular values $d_1 \ge d_2 \ge \cdots \ge d_p$ are diagonal elements of **D**.

Each d_i is equal to $\sqrt{\lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})}$.

Condition number of **X** is $\kappa(\mathbf{X}) = \frac{d_i}{d_p} = \sqrt{\kappa(\mathbf{X}^{\mathsf{T}}\mathbf{X})}.$

Can we solve least squares problem using SVD?

Back to normal equations

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = (\mathbf{V}\mathbf{D}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}})^{-1}\mathbf{V}\mathbf{D}\mathbf{U}^{\mathsf{T}}\mathbf{y}$$
$$= (\mathbf{V}\mathbf{D}^{2}\mathbf{V}^{\mathsf{T}})^{-1}\mathbf{V}\mathbf{D}\mathbf{U}^{\mathsf{T}}\mathbf{y}$$
$$= \mathbf{V}^{-\mathsf{T}}\mathbf{D}^{-2}\mathbf{V}^{-1}\mathbf{V}\mathbf{D}\mathbf{U}^{\mathsf{T}}\mathbf{y}$$
$$= \mathbf{V}\mathbf{D}^{-2}\mathbf{D}\mathbf{U}^{\mathsf{T}}\mathbf{y}$$
$$= \mathbf{V}\mathbf{D}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{y}$$

where $\mathbf{V}\mathbf{D}^{-1}\mathbf{U}$ has same κ as \mathbf{X} :

kappa(X)

[1] 28.86055

d <- svd(X)\$d
d[1] / d[3]</pre>

[1] 26.43029

SVD(**X**) more accurate than Cholesky(**X**^T**X**), but $O(np^2)$ vs $O(p^3)$. Objection: **X**^T**X** costs $O(np^2)$! But recall L3 BLAS efficiency...

```
n <- 100000; p <- 10
X <- matrix(rnorm(n*p), n, p)
XtX <- crossprod(X)</pre>
```

Unit: microseconds

min	lq	mean	median	uq
2453.233	2656.532	2735.1213	2710.5325	2804.938
7.410	18.030	27.8788	29.9935	33.776
53.779	62.969	326.4207	109.1420	127.781
30670.809	32693.951	34450.2833	34556.6020	35719.945 3
	2453.233 7.410 53.779	2453.2332656.5327.41018.03053.77962.969	2453.2332656.5322735.12137.41018.03027.878853.77962.969326.4207	minlqmeanmedian2453.2332656.5322735.12132710.53257.41018.03027.878829.993553.77962.969326.4207109.142030670.80932693.95134450.283334556.6020

In n = p scenario:

n <- 1000; p <- 1000 X <- matrix(rnorm(n*p), n, p) XtX <- crossprod(X)</pre>

Unit: milliseconds

exprminlqmeanmedianuqXtX29.2693729.3960733.8167429.5571430.5547268chol13.4500813.5671013.9146513.7195613.9387218eig241.76111242.77174245.73050245.84178246.54577253svd606.10923606.99428624.72142618.80716630.25739673

Can we have the accuracy of SVD(X) without paying the full price?

[4] The QR decomposition

If **X** is $(n \times p)$ matrix then its QR decomposition is

 $\mathbf{X} = \mathbf{Q}\mathbf{R},$

where

Q is (n × p) with orthogonal columns
R is (p × p) upper triangular

Like SVD, it costs $O(np^2)$ but usually 1/3 of SVD.

To solve least squares do:

$$\begin{split} \hat{\boldsymbol{\beta}} &= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = (\mathbf{R}^{\mathsf{T}}\mathbf{Q}^{\mathsf{T}}\mathbf{Q}\mathbf{R})^{-1}\mathbf{R}^{\mathsf{T}}\mathbf{Q}^{\mathsf{T}}\mathbf{y} \\ &= (\mathbf{R}^{\mathsf{T}}\mathbf{R})^{-1}\mathbf{R}^{\mathsf{T}}\mathbf{Q}^{\mathsf{T}}\mathbf{y} \\ &= \mathbf{R}^{-1}\mathbf{R}^{-\mathsf{T}}\mathbf{R}^{\mathsf{T}}\mathbf{Q}^{\mathsf{T}}\mathbf{y} \\ &= \mathbf{R}^{-1}\mathbf{Q}^{\mathsf{T}}\mathbf{y}. \end{split}$$

Note that

$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{R}^{\mathsf{T}}\mathbf{Q}^{\mathsf{T}}\mathbf{Q}\mathbf{R} = \mathbf{R}^{\mathsf{T}}\mathbf{R},$

so **R** factor of $QR(\mathbf{X})$ is Cholesky factor of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$.

What did we gain? Why compute Cholesky via expensive QR? Let:

- **R** be the true Cholesky factor
- $\hat{\mathbf{R}}_{Ch}$ be the output of QR on \mathbf{X}
- $\hat{\mathbf{R}}_{QR}$ be the output of Chol on $\mathbf{X}^{\mathsf{T}}\mathbf{X}$.

Each approach has an error, that is

$$\hat{\mathbf{R}}_{Ch}^{\mathsf{T}}\hat{\mathbf{R}}_{Ch} = \mathbf{X}^{\mathsf{T}}\mathbf{X} + \mathbf{E}_{Ch},$$
$$\hat{\mathbf{D}}_{L}^{\mathsf{T}}\hat{\mathbf{D}}_{L} = \mathbf{X}^{\mathsf{T}}\mathbf{X} + \mathbf{E}_{Ch},$$

$$\mathbf{R}_{QR}^{\mathsf{I}}\mathbf{R}_{QR}=\mathbf{X}^{\mathsf{I}}\mathbf{X}+\mathbf{E}_{QR},$$

but QR is more accurate, that is $||\mathbf{E}_{QR}|| < ||\mathbf{E}_{Ch}||$.

This is because QR works with **X** which has a lower κ .

Smaller error in $\hat{\mathbf{R}}_{QR}$ leads to smaller error in $\hat{\boldsymbol{\beta}}$.

Further, if **X** is ill-conditioned, $Chol(\mathbf{X}^{\mathsf{T}}\mathbf{X})$ breaks before $QR(\mathbf{X})$.

```
set.seed(1)
n <- 100
x <- runif(n)
xs <- x + 1e7
Xs <- cbind(1, xs, xs<sup>2</sup>)
XtXs <- crossprod(Xs)</pre>
```

Then

C <- chol(XtXs)
Error in chol.default(XtXs) :
the leading minor of order 3 is not positive</pre>

while

QR <- qr(Xs)

still works.

n <- 100000; p <- 10 # n >> p

X <- matrix(rnorm(n*p), n, p); XtX <- crossprod(X)</pre>

Unit: microseconds

expr	min	lq	mean	median	uq	
XtX	2733.012	2818.613	2876.6381	2864.1405	2953.997	
chol	10.506	19.770	32.8223	33.8465	39.668	
eig	51.397	111.058	115.0525	129.9285	134.261	
svd	26491.693	28449.205	29363.4988	29053.6610	29985.220	3
qr	10404.237	10831.122	15913.3023	11125.3920	11770.592	ĺ

So QR slower than Cholesky/Eigen but faster than SVD.

QR is what stats::lm() uses.

n <- 1000; p <- 1000 # n = p X <- matrix(rnorm(n*p), n, p); XtX <- crossprod(X)</pre>

Unit: milliseconds

expr	min	lq	mean	median	uq	
XtX	29.29536	29.53522	31.05656	29.88605	30.45376	39
chol	13.48713	13.52293	18.17425	14.50770	15.03922	5:
eig	238.13905	239.07331	254.09407	244.87891	264.24811	291
svd	619.60280	623.08426	658.68510	642.44102	710.35909	725
qr	220.74870	226.27763	240.71120	237.40329	258.84939	274

Here QR faster than SVD and competitive with $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ + eigen.

For $n \approx p$ QR might offer more accuracy with some extra cost.

Conclusions

We used linear example to illustrate matrix computation. Key message I: don't invert matrices unless you really have to. In linear regression, you lose accuracy and do more computation. Key message II: conditional number quantifies error propagation. Key message III: tradeoff between accuracy and computing time. On computing time, consider the scenario: $n \gg p$, $n \approx p$... Order of computation $O(np^2)$ vs $O(p^3)$ is not the whole story. You need to consider also:

- software (BLAS, compiled vs interpreted language, etc)
- parallelisation opportunities
- hardware (GPU vs CPU)