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Recap on SD and Newton’s methods

Weaknesses of steepest descent:
▶ Provides direction but no information on step-length;
▶ Tends to zig-zag.

Improved by Newton’s method via a better local model, but:

1. Needs to compute the Hessian matrix H;

2. Need to ensure its positive definiteness.

Both need line search to guarantee convergence.

Can we avoid having to derive and compute H?
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Obvious solution is to approximate H via finite differences (FD).

This remove analytical effort, but still need to store H and solve:

H∆ = −∇f (θ).

FD can be expensive: p = dim(θ) gradient evaluations needed.

Alternative is to use quasi-Newton methods.

Idea is to use past gradients to update an approximate Hessian.

Update can be performed:
▶ Directly on inverse B = H−1 so we can compute

∆ = −H−1∇f (θ) = −B∇f (θ).

▶ So to guarantee that B is positive definite.
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Quasi-Newton methods

At θ[k] we have pos. def. approx. to H[k] and B[k].

So search direction is

∆ = −B[k]∇f (θ[k])

Along the θ[k] + ∆ direction we can evaluate f (θ) and ∇f (θ).

How to use them to update to (pos. def.) H[k+1] and B[k+1]?
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To get intuition, consider 1D case.
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What are we doing? Let f ′(θ) be df
dθ .

We considered the local model at θ[k+1]

f (θ) ≃ f̃ (θ) = f (θ[k+1]) + f ′(θ[k+1])(θ − θ[k+1]) + 1
2H (θ − θ[k+1])2,

we differentiate w.r.t. θ

f̃ ′(θ) = f ′(θ[k+1]) + H (θ − θ[k+1]),

and find H such that f ′(θ[k]) = f̃ ′(θ[k]), that is

f ′(θ[k]) = f ′(θ[k+1]) + H (θ[k] − θ[k+1]),

so (anticlimax here)

H[k+1] = f ′(θ[k+1]) − f ′(θ[k])
θ[k+1] − θ[k] (finite differences, not updating H[k])

But H > 0 implies that if θ[k+1] > θ[k] then f ′(θ[k+1]) > f ′(θ[k]).
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This is not always the case:
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We need to increase the step-length:
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In D > 1 “gradient matching requirement” (secant equation) is

∇f (θ[k]) = ∇f (θ[k+1]) + H[k+1](θ[k] − θ[k+1]).

Rearranging

∇f (θ[k+1]) − ∇f (θ[k]) = H[k+1](θ[k+1] − θ[k]),

or B[k+1]yk = sk.

H[k+1] has p2 elements but equation imposes p constraints.

So it does not uniquely define H[k+1] or its update from H[k].

The BFGS method finds the update that solves

B[k+1] = argmin
B

||B − B[k]||Frob,

subject to
B = BT and Byk = sk.
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But there are other options, e.g. the DFP update for H[k+1].

The solution to constrained optimisation problem is:

B[k+1] = (I − ρkskyT
k )B[k](I − ρkyksT

k ) + ρksksT
k

where ρ−1
k = sT

k yk, or

B[k+1] = B[k] + ρkskyT
k B[k]

(
ρkyksT

k − 2I
)

+ ρksksT
k

which is a rank-2 update.

Note: we did not impose positive definiteness constraint on B[k+1].

This is guaranteed if

ρ−1
k = (θ[k+1] − θ[k])T(∇f (θ[k+1]) − ∇f (θ[k])) > 0.

You want f (θ) to become flatter in the direction of the step.

20 / 27



Here ρk would be negative:
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ρk > 0 ensured by step-length α statisfying Wolf conditions.

Recall step is ∆α = α∆ = −αB[k]∇f (θ[k]).

Recall ∇f (θ[k])T∆α < 0 if B[k] is pos def.

First is sufficient decrease condition:

f (θ[k] + ∆α) ≤ f (θ[k]) + c1∇f (θ[k])T∆α

with c1 ∈ (0, 1).

So condition says that f (θ[k] + ∆α) < f (θ[k]) by a margin.
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Then there is a curvature condition:

∇f (θ[k] + ∆α)T∆α ≥ c2∇f (θ[k])T∆α,

with c2 ∈ (c1, 1).

Substracting ∇f (θ[k])T∆α from both sides

(∇f (θ[k] + ∆α) − ∇f (θ[k]))T∆α ≥ (c2 − 1)∇f (θ[k])T∆α,

or
ρ−1

k ≥ (c2 − 1)∇f (θ[k])T∆α > 0.

So it guarantees that B[k+1] will be pos def.
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Relative to Newton’s method, with BFGS:
▶ You do not need to find the Hessian;
▶ You do not need to solve ∆α = H−1∇f which is O(p3);
▶ Step will not be as good as Newton because you are

approximating H;
▶ You need to initialise B[0].

Let’s look at some examples:
library(FLtools)
FLtools::optimisation()
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What if I don’t want to compute ∇f (θ)?
You can try the Nelder-Mead or downhill symplex optimiser.

Figure 1: From Wikipedia

NOTE: it’s the default optimiser in stats::optim().

For examples, see FLtools::optimisation().
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Leading to the next part

We mentioned that it’s important to look at your objective.
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But in which direction should we look when D ≫ 1?

SD, Newton and BGFS provide a search direction ∆.

That’s the first direction along which to look.

Here is a real-world example I’ve encountered.
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▶ y-axis is loglik(θ + α∆)

▶ x-axis is γ used in
α = 1

2γ

Objective is deterministic but evaluated up to numerical noise.
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