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Recap on SD and Newton’s methods

Weaknesses of steepest descent:
» Provides direction but no information on step-length;
» Tends to zig-zag.
Improved by Newton's method via a better local model, but:
1. Needs to compute the Hessian matrix H;
2. Need to ensure its positive definiteness.
Both need line search to guarantee convergence.

Can we avoid having to derive and compute H?
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Obvious solution is to approximate H via finite differences (FD).

This remove analytical effort, but still need to store H and solve:

HA = —V£(6).

FD can be expensive: p = dim(@) gradient evaluations needed.
Alternative is to use quasi-Newton methods.

Idea is to use past gradients to update an approximate Hessian.
Update can be performed:

» Directly on inverse B = H™! so we can compute
A = —H1Vf(8) = —-BVF(6).

» So to guarantee that B is positive definite.
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Quasi-Newton methods

At 64 we have pos. def. approx. to HIX and BIX.

So search direction is

A = —BHvr(glH)

Along the 81 + A direction we can evaluate f(0) and V£(9).

How to use them to update to (pos. def.) HIk*1 and Blk+1?
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5/27



(6)
0.06

0.08

0.04

0.00 0.02

intuition, consider 1D case.

6/27



(6)
0.06

0.08

0.04

0.00 0.02

intuition, consider 1D case.

0.0

0.2

7/27



(6)
0.06

0.08

0.04

0.00 0.02

intuition, consider 1D case.

0.0

0.2

8/21



(6)
0.06

0.08

0.04

0.00 0.02

intuition, consider 1D case.

0.0

0.2

9/21



(6)
0.06

0.08

0.04

0.00 0.02

intuition, consider 1D case.

0.0

0.2

10/27



What are we doing? Let () be 9.
We considered the local model at Al<+1]

~ 1
£(0) ~ F(0) = F(OIF)  F(glk+) (9 — g+ 4 SH(0 - gl
we differentiate w.r.t. 6

7(0) = £(01F) 4 H (g — gkt
and find H such that f/(6d) = 7/(6[H), that is
F(@MU:: ﬂ(6M+1U_+_H(9M]__0M+H)’

so (anticlimax here)

fl(g[k—&-l]) _ f’(@[k])

[k+1] _
HE S = = — g

(finite differences, not updating HI¥)

But H > 0 implies that if 8kt > glH then f/(lk+11) > f/(9IH),
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This is not always the case:
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This is not always the case:
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This is not always the case:
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We need to increase the step-length:
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We need to increase the step-length:
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We need to increase the step-length:
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In D > 1 “gradient matching requirement” (secant equation) is
V(W) = vi(elkttl) 4 pliktglkd — glktly,
Rearranging
vty — vr(glHy = niktglkttl _ gldy,

or B““l]yk = Sg.
Hk+1 has p? elements but equation imposes p constraints.
So it does not uniquely define HIk*1 or its update from HIA,

The BFGS method finds the update that solves

Bl+l — argmin [[B — B ||krob,

subject to
B=B" and By =sy.
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But there are other options, e.g. the DFP update for HIk+1],

The solution to constrained optimisation problem is:
BIH = (1 — puskyf)BY(1 — pryisi) + prsisic
where p;l = S1 Yk, O
BIFt1 = B + ps.y B <PkYk5?<— - 2') + PrskSk

which is a rank-2 update.
Note: we did not impose positive definiteness constraint on BIAt1l.

This is guaranteed if

,0;1 _ (e[k—l—l] - H[k])T(Vf(H[kH]) o Vf(O[k])) > 0.

You want (@) to become flatter in the direction of the step.
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Here pi would be negative:
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pk > 0 ensured by step-length « statisfying Wolf conditions.
Recall step is A, = oA = —aBHWVF(O).
Recall VFA(OM)TA, < 0if B[ is pos def.
First is sufficient decrease condition:
F(OM + A,) < F(OM) + VAT A,

with ¢; € (0,1).
So condition says that (814 + A,) < f(814) by a margin.
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Then there is a curvature condition:
VAOH + n)TA, > VAOM)TA,,

with ¢ € (C17 1).

Substracting VF(8I)TA,, from both sides
(VAW + A,) - VAOM)TA, > (e — 1)VF(OM)T A,

or
pit > (e —1)vieHTAa, > 0.

So it guarantees that BIXT1l will be pos def.
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Relative to Newton's method, with BFGS:
» You do not need to find the Hessian;
» You do not need to solve A, = H~1Vfwhich is O(p3);

» Step will not be as good as Newton because you are
approximating H;

» You need to initialise B[O

Let's look at some examples:

library(FLtools)
FLtools: :optimisation()
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What if | don't want to compute V£(0)?

You can try the Nelder-Mead or downhill symplex optimiser.

reflect
@ l ---------- o
contract ) be /
" expand

Figure 1: From Wikipedia

NOTE: it's the default optimiser in stats: :optim().

For examples, see FLtools: :optimisation().
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Leading to the next part

We mentioned that it's important to look at your objective.
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But in which direction should we look when D > 17
SD, Newton and BGFS provide a search direction A.
That's the first direction along which to look.

Here is a real-world example I've encountered.
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Objective is deterministic but evaluated up to numerical noise.
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