
Numerical Calculus I: differentiation

Anthony Lee

December 2024

1 / 19

Outline

Introduction

Finite differencing

Automatic differentiation

Recap

1 / 19

Outline

Introduction

Finite differencing

Automatic differentiation

Recap

1 / 19

Introduction

• Statistical computations often involve computing derivatives
and integrals.

• For theoretical work, we often analyze these objects purely
mathematically.

• For practical work, we need to actually differentiate and
integrate specific functions.

• In many cases, this can be done exactly but there are many
situations where we need to approximate a derivative /
integral.

• In some situations we really want an algorithmic solution as a
fitting procedure may involve

- creating new functions, and
- doing some calculus with them.

2 / 19

Outline

Introduction

Finite differencing

Automatic differentiation

Recap

2 / 19

Derivatives

• The derivative of a function f : R → R is the function f ′ given
by

f ′(x) = lim
h→0

f (x + h)− f (x)

h
,

if the limit exists.
• Symbolic computations (e.g. in Maple) can compute lots of

derivatives, but we are interested here in a different approach.
• Natural approach:

f ′h(x) =
f (x + h)− f (x)

h
,

with h “suitably small”.

3 / 19

Gradients and partial derivatives

• The ith partial derivative of f : Rd → R at a is

∂f

∂xi
(a) = lim

h→0

f (a1, . . . , ai−1, ai + h, ai+1, . . . , ad)− f (a)
h

.

• The gradient of a function f : Rd → R is the vector of partial
derivatives (

∂f

∂x1
, . . . ,

∂f

∂xd

)
.

• These are used a lot and d can be very large indeed.
• We “only” need to approximate derivatives of f : R → R.

4 / 19

Cancellation error

• One problem: computers don’t do precise calculations.
• They use a large number of real numbers to approximate the

whole of R.
• This is annoying! Consider the code in the lecture notes:
- a <- 1e16; b <- 1e16 + pi; d <- b-a
• The value of d after these operations is 4, which is quite far

from π.
• Example of a problem: taking the difference of two floating

point numbers with similar size and sign.
- Exactly the kind of issue we have with approximating f ′h(x).

5 / 19

Approximation error: part I

• Consider Taylor’s Theorem:

f (x + h) = f (x) + hf ′(x) +
1
2
h2f ′′(ξ),

for ξ ∈ (x , x + h).
• Assume |f ′′| ≤ L everywhere, at least to make a point.
• Rearranging gives∣∣∣∣ f (x + h)− f (x)

h
− f ′(x)

∣∣∣∣ = 1
2
h|f ′′(ξ)| ≤ Lh

2
.

• Quantifies the error from taking finite h.

6 / 19

Approximation error: part II

• We can’t compute f pointwise exactly.
• Suppose we actually compute f̃ , which satisfies the relative

error criterion:
|f̃ (x)− f (x)| ≤ ϵ|f (x)|.

• Then if |f (z)| ≤ Lf everywhere, we obtain∣∣∣∣∣ f̃ (x + h)− f̃ (x)

h
− f (x + h)− f (x)

h

∣∣∣∣∣ ≤ 2
ϵLf
h

.

• So we have bounded the difference between what we compute
and f ′h(x).

7 / 19

Approximation error: the tradeoff

• Now we can bound the total error (triangle inequality):∣∣∣∣∣ f̃ (x + h)− f̃ (x)

h
− f ′(x)

∣∣∣∣∣ ≤ Lh

2
+

2ϵLf
h

.

• Minimizing w.r.t. h gives

h =

√
4ϵLf
L

,

which manages the tradeoff between the “rounding error” and
not taking the limit.

• This explains why h ∼ O(
√
ϵ) is relatively widespread in

practice.

8 / 19

Other finite difference formulae

• There are other schemes, e.g

f ′h(x) =
f (x + h)− f (x − h)

2h
,

which can be more accurate.
• Similarly, there are formulae for approximating higher order

derivatives:

f ′′h (x) =
f (x + h)− 2f (x) + f (x − h)

h2 .

• These can essentially be analyzed the same way.

9 / 19

Outline

Introduction

Finite differencing

Automatic differentiation

Recap

9 / 19

Differentiation is “easy”

• Computations can be expressed as compositions of functions
involving elementary arithmetic operations.

• In principle, the chain rule and some “primitive” derivatives are
sufficient to allow computation of any derivative.

- This is very different to integration.
• So we could automate it!
- Symbolic computation is one route, but this tends to lead to

complicated expressions quite quickly.
- Here, we will look at automatic differentiation, a quite

different approach.

10 / 19

Automatic differentiation
• Goal: compute derivatives exactly as a by-product of using the

computer code that evaluates the function.
• Idea: use the chain rule.
• First the univariate case, for simplicity.
• If y = f3 ◦ f2 ◦ f1(x), then write

w0 = x ,w1 = f1(x), w2 = f2(w1), y = w3 = f3(w2).

• We obtain
∂y

∂x
=

∂y

∂w2

∂w2

∂w1

∂w1

∂x
=

∂f3
∂w2

(w2)
∂f2
∂w1

(w1)
∂f1
∂x

(x).

• Can compute each partial derivative

∂fi
∂wi−1

(wi−1)

when computing wi = fi (wi−1), and then take the product of
these (accumulate).

11 / 19

Automatic differentiation: forward mode

• Now with vectors; assume f : Rn → Rm.
• One can lay out the vectors so that

wi = fi (wi−1),

with x = w0, fi : Rdi−1 → Rdi , wi ∈ Rdi and y = wL.
• Wolog assume we want the partial derivative of y w.r.t. x1.
• We compute everything forwards: as we compute wij we also

compute

∂wij

∂x1
=

di−1∑
k=1

∂wij

∂wi−1,k

∂wi−1,k

∂x1
.

12 / 19

Forward mode example
• Consider y = exp(x1x2) + x2

1 , evaluated at x = (a, b).
• Write w0 = (x1, x2), w1 = (w01 · w02,w01 · w01),

w2 = (exp(w11),w12) and y = w3 = w21 + w22.
• Find w0 = (a, b) (

∂w01

∂x1
,
∂w02

∂x1

)
= (1, 0).

Then w1 = (ab, a2) and

∂w11

∂x1
=

∂w11

∂w01

∂w01

∂x1
+

∂w11

∂w02

∂w02

∂x1

= w02 · 1 + w01 · 0 = b.

Similarly,

∂w12

∂x1
=

∂w12

∂w01

∂w01

∂x1
+

∂w12

∂w02

∂w02

∂x1

= 2a · 1 + 0 · 0 = 2a.

13 / 19

Forward mode example
• Consider y = exp(x1x2) + x2

1 , evaluated at x = (a, b).
• Write w0 = (x1, x2), w1 = (w01 · w02,w01 · w01),

w2 = (exp(w11),w12) and y = w3 = w21 + w22.
• Now, w2 = (exp(ab), a2)

∂w21

∂x1
=

∂w21

∂w11

∂w11

∂x1
+

∂w21

∂w12

∂w12

∂x1

= exp(w11) · b + 0 · 2a = exp(ab) · b,
and

∂w22

∂x1
=

∂w22

∂w11

∂w11

∂x1
+

∂w22

∂w12

∂w12

∂x1

= 0 · b + 1 · 2a = 2a

• Finally w3 = exp(ab) + a2 and
∂w3

∂x1
=

∂w3

∂w21
· ∂w21

∂x1
+

∂w3

∂w22
· ∂w22

∂x1

= 1 · exp(ab) · b + 1 · 2a.
14 / 19

Forward mode recap
• We’ve looked at the computation of ∂y/∂x1 at a particular

point.
• You can get, e.g., ∂y/∂x2 by running another pass, or

computing relevant quantities alongside.
• Implicitly, we are applying the chain rule for Jacobians

Jh(x) =


∂h1(x)
∂x1

· · · ∂h1(x)
∂xn

...
. . .

...
∂hm(x)
∂x1

· · · ∂hm(x)
∂xn

 ,

i.e. using the identity

Jg◦f (x) = Jg (f (x))Jf (x).

• Of course, part of the issue is how to compute these things
automatically:

- source code transformation / operator overloading.
15 / 19

Reverse mode

• An alternative to forward mode is reverse mode.
• We can use associativity of matrix multiplication to justify

computing the other way around.
• To be concrete, assume y = g(x) = f3 ◦ f2 ◦ f1(x), with

f1 : Rn → Rp, f2 : Rp → Rq, f3 : Rq → Rm.
• Chain rule:

Jg (x) = Jf3(f2 ◦ f1(x))Jf2(f1(x))Jf1(x),

which is a product of 3 matrices of size m×q, q×p and p×n.
• Forward complexity (right to left): qpn +mqn.
• Reverse complexity (left to right): mqp +mpn.
• Simple case, m = 1 and p = q = n. Then forward is O(n3)

but reverse is O(n2).

16 / 19

Reverse mode: memory / optimal computation

• In forward mode, we only need one “layer” to compute the
next layer.

• In reverse mode, we need to store the values and partial
derivatives until we sweep backwards.

• This can be a large memory cost.
• In practice, one can mix forward and reverse mode.
- Any sequence of appropriate matrix multiplications is fine.
• The optimal sequence is NP-hard (strange examples) or at

least of open complexity.

17 / 19

A caveat

• Consider the function, for positive y ,

B(y ;λ) =

{
(yλ − 1)/λ λ ̸= 0
log(y) λ = 0

.

• If f (λ) = yλ = exp(log y · λ), we have f (k)(λ) = log(y)kyλ.
• Using this, we can find that

lim
h→0

yh − 1
h

= log(y),

and
∂B

∂λ
(y ; 0) = lim

h→0

yh−1
h − log(y)

h
=

1
2
log(y)2,

but AD will not obtain this expression using only the
evaluation of B(y ; 0).

18 / 19

Outline

Introduction

Finite differencing

Automatic differentiation

Recap

18 / 19

Wrapping up

• Finite differences are a classical and fairly robust way to
approximate derivatives of sufficiently smooth functions.

- You get approximate values, trading off two sources of error.
- No problem if computation of function involves conditional

statements!
• Symbolic computation (e.g. in Maple or Mathematica) can

also be useful.
- You get exact expressions, useful mainly for simple enough

functions.
• Automatic differentiation can be used to compute exact

derivatives at a point.
- You get exact values.

19 / 19

	Introduction
	Finite differencing
	Automatic differentiation
	Recap

