Numerical Calculus I: differentiation

Anthony Lee

December 2024

1/19

Outline

Introduction

Finite differencing

Automatic differentiation

Recap

1/19

Outline

Introduction

1/19

Introduction

e Statistical computations often involve computing derivatives
and integrals.

® For theoretical work, we often analyze these objects purely
mathematically.

® For practical work, we need to actually differentiate and
integrate specific functions.

® |n many cases, this can be done exactly but there are many
situations where we need to approximate a derivative /
integral.

® |n some situations we really want an algorithmic solution as a
fitting procedure may involve

- creating new functions, and

- doing some calculus with them.

2/19

Outline

Finite differencing

2/19

Derivatives

e The derivative of a function f : R — R is the function f’ given

b
’ / . f(x+h) —f(x)
109 = fimy =

if the limit exists.

® Symbolic computations (e.g. in Maple) can compute lots of
derivatives, but we are interested here in a different approach.

e Natural approach:

£(x) = f(x+ h/)1_ f(x)’

with h “suitably small”.

3/19

Gradients and partial derivatives

e The ith partial derivative of f : RY — R at a is
of : f(a].)'"731'71731'+h7af+17"‘7ad)_f(a)
— = | .
8x,-(a) hino h

The gradient of a function f : R — R is the vector of partial

derivatives
of of
ox1’ T 0xq)

These are used a lot and d can be very large indeed.

We “only” need to approximate derivatives of f : R — R.

4/19

Cancellation error

® One problem: computers don’t do precise calculations.

® They use a large number of real numbers to approximate the
whole of R.

® This is annoying! Consider the code in the lecture notes:
- a <- 1lel6; b <- 1lel6 + pi; d <- b-a

® The value of d after these operations is 4, which is quite far
from .

e Example of a problem: taking the difference of two floating
point numbers with similar size and sign.

- Exactly the kind of issue we have with approximating f;(x).

5/19

Approximation error: part |

Consider Taylor’'s Theorem:
1
f(x+ h) = f(x) + hf'(x) + §h2f"(§),

for £ € (x,x+ h).

Assume |f”| < L everywhere, at least to make a point.

® Rearranging gives

f(x+ h)—f(x)
h

1 Lh
— ()| = SO < 2

Quantifies the error from taking finite h.

6/19

Approximation error: part |l

e We can't compute f pointwise exactly.

* Suppose we actually compute f, which satisfies the relative
error criterion:

[F(x) = F()] < elf(x)].
® Then if |f(z)| < Lf everywhere, we obtain
f(x+h) —F(x) flx+h)—Ff(x) eLs

_ <o
h h _2h

® So we have bounded the difference between what we compute
and f;(x).

7/19

Approximation error: the tradeoff

® Now we can bound the total error (triangle inequality):

Fx + h) — F(x)
h

— f’(x)| < th + 2eke

2 h

® Minimizing w.r.t. h gives

[4el ¢
h=
L)

which manages the tradeoff between the “rounding error” and
not taking the limit.

® This explains why h ~ O(+/e) is relatively widespread in
practice.

8/19

Other finite difference formulae

® There are other schemes, e.g

£(x) = f(x+ h)2—hf(x - h)’
which can be more accurate.
® Similarly, there are formulae for approximating higher order
derivatives:
f(x+ h) —2f(x)+ f(x— h)
h? ’

f'(x) =

® These can essentially be analyzed the same way.

9/19

Outline

Automatic differentiation

9/19

Differentiation is “easy”

e Computations can be expressed as compositions of functions
involving elementary arithmetic operations.

® |n principle, the chain rule and some “primitive” derivatives are
sufficient to allow computation of any derivative.

- This is very different to integration.
® So we could automate it!

- Symbolic computation is one route, but this tends to lead to
complicated expressions quite quickly.

- Here, we will look at automatic differentiation, a quite
different approach.

10/19

Automatic differentiation

Goal: compute derivatives exactly as a by-product of using the
computer code that evaluates the function.

Idea: use the chain rule.

First the univariate case, for simplicity.

If y = f30fofi(x), then write

wo=x ,w =f(x), wa=h(w), y=ws=mfh(wm).

We obtain
al Oy Owmdwy O (ws) 0h (w)%(x)
Ox Ows Owy Ox Ows 2 Owy Vox

Can compute each partial derivative

of
aW,'_]_ (Wl_l)

when computing w; = fi(w;_1), and then take the product of
these (accumulate).

11/19

Automatic differentiation: forward mode

® Now with vectors; assume f : R" — R™,

® One can lay out the vectors so that
w; = fi(wj_1),

with x =wp, fi : R%1 5 R w; e R% andy = w;.
® Wolog assume we want the partial derivative of y w.r.t. xy.
® We compute everything forwards: as we compute wj; we also
compute

di—1
Owj _

aW,'j 8W,',1,k

6X1 N —1 8W,',17k 8x1

12/19

Forward mode example
* Consider y = exp(x1x2) + x7, evaluated at x = (a, b).
® Write wo = (x1, x2), w1 = (wo1 - Wo2, Wo1 - Wo1),
wa = (exp(wi1), wi2) and y = ws = wo1 + woo.

® Find wg = (a, b)
Owor Owpo
=(1,0).
(axl’ 8X1> (’O)
Then wy = (ab, a%) and
Owir Owip Owpr | Owir Owga
8X1 - 8W01 8x1 aWOQ 8X1
=wp-1+wy-0=0b.

Similarly,
Owip Owio Owgr . Owiz Owgy

8X1 N 8W01 8X1 aW()z axl
=2a-1+0-0=2a.

13/19

Forward mode example
* Consider y = exp(x1x2) + x7, evaluated at x = (a, b).
® Write wg = (x1,x2), w1 = (wo1 - wo2, wo1 - Wo1),
wy = (exp(wi1), wi2) and y = wz = woy + wap.
* Now, wy = (exp(ab), a?)
6W21 - 8W21 8w11 8W21 6W12
8X1 N 8W11 8X1 awlz axl
= exp(w11) - b+ 0-2a = exp(ab) - b,

and
aW22 . 8W22 8W11 8W22 8W12
6x1 - 8W11 8X1 8W12 8x1
=0-b+1-2a=2a

® Finally w3 = exp(ab) + a° and

aW3 6W3 6W21 8W3 8W22

8X1 - 8W21 . 8X1 8W22 ' 8X1
=1-exp(ab)-b+1-2a.

14 /19

Forward mode recap

We've looked at the computation of dy/0x; at a particular
point.

You can get, e.g., dy/Oxa by running another pass, or
computing relevant quantities alongside.

Implicitly, we are applying the chain rule for Jacobians
by (x) b1 (x)
ox1 e Oxn
Jh(X) = - ’
Ohm(x) Ohm(x)
Ox1 U Oxn

i.e. using the identity

Jgor (x) = Jg (£ (x)) Jr (x)-

Of course, part of the issue is how to compute these things
automatically:

source code transformation / operator overloading.

15/19

Reverse mode

® An alternative to forward mode is reverse mode.

e We can use associativity of matrix multiplication to justify
computing the other way around.

® To be concrete, assume y = g(x) = f3 o f, o f1(x), with
i : R" - RP, f:RP - RY, f3: RI — R™.

® Chain rule:

Jg(x) - Jf3(f2 ° fl(x))sz(fl(X))Jfl(X)?

which is a product of 3 matrices of size mx g, g x p and p x n.
® Forward complexity (right to left): gpn + mgn.
® Reverse complexity (left to right): mgp + mpn.

e Simple case, m =1 and p = g = n. Then forward is O(n?)
but reverse is O(n?).

16/19

Reverse mode: memory / optimal computation

® |n forward mode, we only need one “layer’ to compute the
next layer.

® In reverse mode, we need to store the values and partial
derivatives until we sweep backwards.

® This can be a large memory cost.
® |n practice, one can mix forward and reverse mode.
- Any sequence of appropriate matrix multiplications is fine.

® The optimal sequence is NP-hard (strange examples) or at
least of open complexity.

17/19

A caveat

e Consider the function, for positive y,

S 0=/ A #0
B(y'A)_{lgg(y) A=0"

o If f(A) = y* = exp(logy - \), we have FIK(X) = log(y)ky*.
e Using this, we can find that

h _
lim = log(y),
and
0B B log(y) 1 9
9B y0) = iy) Loy

but AD will not obtain this expression using only the
evaluation of B(y;0).

18/19

Outline

Recap

18/19

Wrapping up

¢ Finite differences are a classical and fairly robust way to
approximate derivatives of sufficiently smooth functions.

- You get approximate values, trading off two sources of error.

- No problem if computation of function involves conditional
statements!

® Symbolic computation (e.g. in Maple or Mathematica) can
also be useful.

- You get exact expressions, useful mainly for simple enough
functions.

e Automatic differentiation can be used to compute exact
derivatives at a point.

- You get exact values.

19/19

	Introduction
	Finite differencing
	Automatic differentiation
	Recap

