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Introduction

• Integration is involved in, for example:
• integrating random effects out of a joint distribution to get a

likelihood,
• evaluating expectations, including posterior expectations in

Bayesian inference.

• Unfortunately, integration is typically intractable and accurate
approximations are often computationally expensive.

• There is no simple rule for obtaining the integral of a
composition of functions, cf. differentiation and the chain rule.

• We will look at two approaches:
• one more classical, for integrating 1D functions and,
• one based on viewing integrals as expectations of random

variables.
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Integrals

• The definite integral of a function f over the interval (a, b) is

I (f ) =

∫ b

a
f (x)dx .

• Our goal in quadrature is to approximate this integral with a
sum

N∑
i=1

wi f (xi ),

for some choice of {(xi ,wi ) : i ∈ {1, . . . ,N}}.
• How can we come up with some suitable points and weights?
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Polynomial approximations
• Key high-level idea is that if we approximate f with a

polynomial p then we can compute

I (p) =

∫ b

a
p(x)dx ,

as an approximation of I (f ), since polynomials can be
integrated exactly.

• One particularly simple choice is, with k points x1, . . . , xk , to
use an interpolating polynomial of degree at most k − 1.

• The interpolating polynomial is unique and it is convenient to
express it as a Lagrange polynomial:

pk−1(x) :=
k∑

i=1

ℓi (x)f (xi ),

where the Lagrange basis polynomials are

ℓi (x) =
k∏

j=1,j ̸=i

x − xj
xi − xj

i ∈ {1, . . . , k}.
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Example interpolating polynomials

• Course website
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Piecewise interpolating polynomials

• For finite k , the error ∥f − pk−1∥ may be large.
• Options: increase k or split the domain into subintervals.
- Piecewise polynomial approximation.
• Simple version: split into m subintervals and use k equally

spaced points in each subinterval.
- Closed if we put points at the interval boundaries. Open if we

don’t.
• Course website again.
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Integrating the polynomials

• Consider integrating an interpolating polynomial pk−1:

I (pk−1) =

∫ b

a
pk−1(x)dx

=

∫ b

a

k∑
i=1

ℓi (x)f (xi )dx

=
k∑

i=1

f (xi )

∫ b

a
ℓi (x)dx

=
k∑

i=1

wi f (xi ),

where wi :=
∫ b
a ℓi (x)dx and we recall ℓi (x) =

∏k
j=1,j ̸=i

x−xj
xi−xj

.

• The ℓi can be integrated analytically by hand / ahead of time.
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A note on the domain

• For constants a < b and c < d , we can accommodate a
change of finite interval via∫ b

a
f (x)dx =

∫ d

c
g(y)dy ,

by defining

g(y) :=
b − a

d − c
f

(
a+

b − a

d − c
(y − c)

)
.

• One can also accommodate integrating over (0,∞) or
(−∞,∞) by a similar change of variables.

• Idea: just sort out how to integrate over (−1, 1) or (0, 1).
- Map the problem to this domain if you have some other

domain.
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Some examples

• k = 1, closed: I (p0) = (b − a)f (a).
• k = 1, open: I (p0) = (b − a)f (a+b

2 ).
• k = 2, closed: I (p1) =

b−a
2 {f (a) + f (b)}.

• k = 3, closed: I (p2) =
b−a
6

{
f (a) + 4f (a+b

2 ) + f (b)
}
.

• Integration error bounds depend on the derivative f (k+1) on
(a, b).

• The bounds get really very good for large k , for sufficiently
smooth functions.
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Composite rules

• As with interpolation, we often split into subintervals.
• If A1, . . . ,Am partition (a, b)

I (f ) =

∫ b

a
f (x)dx =

m∑
i=1

∫
f (x) · 1Ai

(x)dx =
m∑
i=1

I (fi ),

so we can compute approximations of each integral separately.
• Course website for some plots.
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Gaussian quadrature

• In practice, one can do even better.
• The main issue with what we’ve seen is the selection of points

within each subinterval.
• One can use some nice mathematics involving orthogonal

polynomials to show that
- choosing a special set of points will improve the approximation

accuracy for the polynomial integral approximations
- even when the interpolating polynomial is not that close to the

true function!
• In practice you can get the nodes and weights using software

packages.
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Multiple integrals
• Consider an integral over D = [a1, b1]× · · · × [ad , bd ]

I (f ) =

∫
D
f (x1, . . . , xd)d(x1, . . . , xd).

• Letting D ′ = [a2, b2]× · · · × [ad , bd ], we rewrite I (f ) as an
iterated integral

I (f ) =

∫ b1

a1

∫
D′

f (x1, . . . , xd)d(x2, . . . , xd)dx1 =

∫ b1

a1

g(x1)dx1,

where taking hx1(x2, . . . , xd) = f (x1, . . . , xd) we have

g(x1) = I (hx1) =

∫
D′

hx1(x2, . . . , xd)d(x2, . . . , xd).

• Suggests a recursive algorithm, which calls a quadrature
method...curse of dimensionality!
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Laplace approximation
• Imagine you have a latent variable model with joint density
f (y , b), b ∈ Rd .

• We want to evaluate f (y) =
∫
f (y , b)db.

• For a fixed y , use a Taylor expansion

log f (y , b) = log f (y , b̂y )−
1
2
(b − b̂y )

TH(b − b̂y ) + · · · ,

where b̂y maximizes f (y , ·).
• Then, if the expansion about b̂y is accurate for all b,

f (y , b) ≈ f (y , b̂y ) exp

{
−1

2
(b − b̂y )

TH(b − b̂y )

}
.

• We find

f (y) ≈ f (y , b̂y )

∫
e−

1
2 (b−b̂y )TH(b−b̂y )db = f (y , b̂y )

(2π)d/2

det(H)1/2
.
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Laplace approximation: alternative version

• We have
f (y , b) = f (y)f (b | y).

• Now assume b | y is N(b̂y ,H
−1), and compute at b = b̂y ,

f (y) =
f (y , b̂y )

f (b̂y | y)
= f (y , b̂y )

(2π)d/2

det(H)1/2
,

since

f (b̂y | y) = 1
(2π)d/2det(H)−1/2 =

det(H)1/2

(2π)d/2
.

• So really this amounts to approximating the conditional with a
Gaussian.

14 / 29



Outline

Introduction

Quadrature

Deterministic approximation

Monte Carlo

Recap

14 / 29



Something different...

• Quadrature is not always appropriate. E.g.,
- high-dimensional integrals
- non-smooth functions.
• In quadrature we compute a weighted sum

N∑
i=1

wi f (xi ),

where xi ,wi are fixed values.
• A strange idea: what if we randomize the Xi and just use

wi =
1
N ?

- Surprisingly, this can be a very good idea.
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Fundamental idea

• The fundamental idea behind Monte Carlo integration is to
view the integral of g over some set X

I =

∫
X
g(x)dx ,

as the expectation of a random variable.
• Find a PDF π such that π(x) > 0 whenever g(x) ̸= 0, then we

can write

I =

∫
X
g(x)dx =

∫
X
f (x)π(x)dx = Eπ[f (X )],

where f (x) = g(x)/π(x).
• Idea: simulate independent Xi ∼ π, compute N−1∑N

i=1 f (Xi ).
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Consistency, lack-of-bias

• Averages of i.i.d. random variables are simple to analyze!
• Consistency: if I is finite,

1
N

N∑
i=1

f (Xi ) →p Eπ[f (X )] = I .

• Lack-of-bias:

E

[
1
N

N∑
i=1

f (Xi )

]
= Eπ[f (X )] = I .
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Variance, CLT

• Variance: if varπ(f ) = Eπ[f (X )2]− Eπ[f (X )]2 < ∞,

var

(
1
N

N∑
i=1

f (Xi )

)
=

1
N

varπ(f (X )).

• CLT:

√
N

{
1
N

N∑
i=1

f (Xi )− I

}
→d N (0, varπ(f )) .

• Quantitative control from
∫
f (x)2π(x)dx .

- Smoothness is irrelevant.
- L2(π) is the space of finite variance functions under π.
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Simple example

• Let I =
∫ 1
0 x2dx . Of course this is 1/3.

• Let π(x) = I(0 < x < 1), i.e. π is Uniform(0, 1).
• Simulate X1, . . . ,XN ∼ π independent and compute

1
N

N∑
i=1

X 2
i .

• Variance is

1
N

[∫ 1

0
x4dx −

{∫ 1

0
x2dx

}2]
=

1
N

{
1
5
− 1

9

}
=

1
N

· 4
45

.
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What about a different π?

• Instead, consider π(x) = 2xI(0 < x < 1).
• Then we need f (x) = g(x)/π(x) = x2/(2x) = x/2 on (0, 1).
• Then simulate X1, . . . ,XN ∼ π independent and compute

1
N

N∑
i=1

Xi

2
.

• Now variance is

1
N

[∫ 1

0

(x
2

)2
2xdx −

{∫ 1

0
x2dx

}2]
=

1
N

{
1
8
− 1

9

}
=

1
N
· 1
72

.

• That’s better!
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Importance sampling

• If we have I =
∫
f (x)π(x)dx , then importance sampling refers

to the identity

I =

∫
f (x)π(x)dx = I =

∫
f (x)w(x)µ(x)dx ,

where w(x) = π(x)/µ(x), and we assume µ(x) > 0 whenever
π(x) > 0.

• Basically the same thing we did when coming up with∫
g(x)dx =

∫
f (x)π(x)dx .

• Often emphasis is on changing hard to sample π to easy to
sample µ.

- Possibly consideration of several f ’s, hence the stronger
constraint.
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Optimal importance distribution
• Consider I =

∫
g(x)dx .

• Importance sampling variance is∫ ∣∣∣∣g(x)µ(x)

∣∣∣∣2 µ(x)dx −
(∫

g(x)dx
)2

,

where the second term does not depend on µ.
• Jensen’s inequality gives∫ ∣∣∣∣g(x)µ(x)

∣∣∣∣2 µ(x)dx ≥
{∫ ∣∣∣∣g(x)µ(x)

∣∣∣∣µ(x)dx}2

=

{∫
|g(x)| dx

}2

.

• Now observe that if µ(x) = |g(x)| /
∫
|g(x)| dx then∫ ∣∣∣∣g(x)µ(x)

∣∣∣∣2 µ(x)dx =

{∫
|g(x)| dx

}2

,

so this is an optimal choice!
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Practical example

• Often we can’t really go for optimality.
- Need to be able to actually sample according to µ.
• Consider π the density of some complicated distribution, e.g. a

Bayesian posterior density.
• If we believe π is close to Normal(m,Σ), we could take
µ = Normal(m,Σ).

• In fact, we might take for m and Σ the maximizer of π and
the inverse Hessian of log π at m.

- This is the Laplace approximation again!
• Try it in the lab...
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Self-normalized importance sampling I

• Try it in the lab...
• Except that we often don’t know π precisely, but only up to a

normalizing constant.
• Posterior:

π(θ) =
1
Z
π0(θ)L(θ; y),

where Z =
∫
π0(θ)L(θ; y)dθ.

• We can compute unnormalized importance weights

w̃(θ) = L(θ; y) ∝
π(θ)

π0(θ)
,

but not w(θ) as we can’t compute Z .
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Self-normalized importance sampling II
• Consider general setting,

∫
f (x)π(x)dx the objective.

• Imagine we can simulate from µ with w̃(x) ∝ π(x)/µ(x).
• Then consider the identity∫

f (x)w̃(x)µ(x)dx∫
w̃(x)µ(x)dx

=

∫
f (x)w(x)µ(x)dx∫
w(x)µ(x)dx

=

∫
f (x)π(x)dx ,

so we can approximate numerator and denominator on LHS!
• I.e., with samples Xi ∼ µ independent, compute

1
N

∑N
i=1 w̃(Xi )f (Xi )

1
N

∑N
i=1 w̃(Xi )

=

∑N
i=1 w̃(Xi )f (Xi )∑N

i=1 w̃(Xi )
=

N∑
i=1

W̄i f (Xi ),

where the self-normalized weights are:

W̄i =
w̃(Xi )∑N
i=1 w̃(Xi )

.

• Cf. quadrature rules.
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Self-normalized importance sampling III

• SNIS is feasible in many scenarios.
• Consistency follows from law of large numbers and continuous

mapping.
• Not unbiased in general.
• Asymptotic normality also holds:

√
N

{
N∑
i=1

W̄i f (Xi )− I

}
→ N(0, σ2(f )),

where I =
∫
f (x)π(x)dx and

σ2(f ) =

∫
(f (x)− I )2w(x)2µ(x)dx .
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A measure of sample quality I

• One simple measure of sample quality is the so-called “effective
sample size”.

• It was inspired originally by quantifying the ratio of asymptotic
variances with µ and with π.

- But this is not what it actually approximates consistently...
- It is (intentionally) function independent.
• The effective sample size is the random variable

EN = N ·

{
1
N

∑N
i=1 w̃(Xi )

}2{
1
N

∑N
i=1 w̃(Xi )2

} ,
where the fraction on the right tends to
R(π, µ) =

{∫
w(x)2µ(x)dx

}−1 ∈ (0, 1].
• The effective sample size takes values in [1,N].
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A measure of sample quality II

• One interpretation:

σ2(f ) =

∫
(f (x)− I )2w(x)2µ(x)dx

≤ ∥f ∥2
osc

∫
w(x)2µ(x)dx

=
∥f ∥2

osc
R(π, µ)

,

and the effective sample size is an approximation of the
denominator.

• We also have a relationship to the χ2-divergence between π
and µ:

R(π, µ) =
1

1 + dχ2(π, µ)
.
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Wrapping up

• Low-dimensional, smooth integrands: give quadrature a go!
• High-dimensional, L2(π) functions: give Monte Carlo a go!
• More seriously, these methods work for suitably simple

problems, which can arise in practice.
• When suitable, certainly easier to explain their use.
- Some statistical models have a lot more regularity than

arbitrary functions.
• For more challenging integrals, there are more advanced

Monte Carlo methods.
- Markov chains, interacting particles, diffusions, auxiliary

distributions, etc.

29 / 29


	Introduction
	Quadrature
	Deterministic approximation
	Monte Carlo
	Recap

