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Introduction

Integration is involved in, for example:

® integrating random effects out of a joint distribution to get a
likelihood,

® evaluating expectations, including posterior expectations in
Bayesian inference.

Unfortunately, integration is typically intractable and accurate
approximations are often computationally expensive.

There is no simple rule for obtaining the integral of a

composition of functions, cf. differentiation and the chain rule.

We will look at two approaches:
® one more classical, for integrating 1D functions and,
® one based on viewing integrals as expectations of random
variables.
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Integrals

® The definite integral of a function f over the interval (a, b) is

® Qur goal in quadrature is to approximate this integral with a

sum
N
Z w;f(x;),
i=1

for some choice of {(x;,w;) : i€ {1,...,N}}.
® How can we come up with some suitable points and weights?
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Polynomial approximations

e Key high-level idea is that if we approximate f with a
polynomial p then we can compute

b
()= [ P,

as an approximation of /(f), since polynomials can be
integrated exactly.

® One particularly simple choice is, with k points xg, ..., xk, to
use an interpolating polynomial of degree at most k — 1.

® The interpolating polynomial is unique and it is convenient to
express it as a Lagrange polynomial:

k
pica(x) == Y 6(x)F (),
i=1

where the Lagrange basis polynomials are

k .
G = I =2 ie{l,... k.

. o Xi T X
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Example interpolating polynomials

e Course website
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https://awllee.github.io/APTS-SC/main-course/calculus2.html#polynomial-interpolation

Piecewise interpolating polynomials

® For finite k, the error ||f — px_1|| may be large.
e QOptions: increase k or split the domain into subintervals.
- Piecewise polynomial approximation.

e Simple version: split into m subintervals and use k equally
spaced points in each subinterval.

- Closed if we put points at the interval boundaries. Open if we
don't.

e Course website again.
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https://awllee.github.io/APTS-SC/main-course/calculus2.html#polynomial-interpolation

Integrating the polynomials

e Consider integrating an interpolating polynomial py_1:

b
(o) = | puca(x)ix

a
b k
= [ D 4()f(x)dx
2 i=1
k b
= f(x) / i(x)dx
i=1 a
k
= Z W,'f(X,'),
i=1
where w; := fabﬁ,-(x)dx and we recall /;(x) = Hle#i %

® The ¢; can be integrated analytically by hand / ahead of time.
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A note on the domain

® For constants a < b and ¢ < d, we can accommodate a
change of finite interval via

/a b f(x)dx = /C ’ g(y)dy,

by defining
b—a
gly) = —f <a+d_c(y—6)> :

® One can also accommodate integrating over (0, c0) or
(—00,00) by a similar change of variables.

® |dea: just sort out how to integrate over (—1,1) or (0, 1).

- Map the problem to this domain if you have some other
domain.
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Some examples

e k=1, closed: I(pg) = (b— a)f(a).
® k=1, open: I(p) = ( a)f (%> ).
e k=2 closed: I(p1) { (a ) f(b)}.

k = 3, closed: I(p2)

(a, b).

® The bounds get really very good for large k, for sufficiently

smooth functions.

a) + 4f(252) + f(b) }.

Integration error bounds depend on the derivative f(k*1) on
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Composite rules

® As with interpolation, we often split into subintervals.
o If Ai,...,An partition (a, b)
m

b m
I(F) :/ F(x)dx = Z/f(x) 4 (x)dx = 3 I(),
a i=1

i=1

SO we can compute approximations of each integral separately.
e Course website for some plots.
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https://awllee.github.io/APTS-SC/main-course/calculus2.html#polynomial-interpolation

Gaussian quadrature

® |n practice, one can do even better.

® The main issue with what we've seen is the selection of points
within each subinterval.

® One can use some nice mathematics involving orthogonal
polynomials to show that

- choosing a special set of points will improve the approximation
accuracy for the polynomial integral approximations

- even when the interpolating polynomial is not that close to the
true function!

® |n practice you can get the nodes and weights using software
packages.
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Multiple integrals

e Consider an integral over D = [a1, b1] X -+ X [aq4, bd]

I(f):/Df(xl,...,xd)d(xl,...,xd).

o Letting D' = [ap, bp] X - -+ X [aq4, bg], we rewrite /(f) as an
iterated integral

b1 bl
I(f) = / (X1, s xq)d(xa, ..., xg)dx1 = / g(x1)dx,
ai D’ EN

where taking hy, (x2,...,xq) = f(x1,...,%q) we have

g(x1) =I(hy) = / hyy (X2, .« .y xq)d(Xx2, . .., Xd)-

/

® Suggests a recursive algorithm, which calls a quadrature
method...curse of dimensionality!
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Laplace approximation

® |magine you have a latent variable model with joint density
f(y,b), b € RY.

* We want to evaluate f(y) = [ f(y, b)db.

® For a fixed y, use a Taylor expansion

log f(y, b) = log f(y, by) — (b by)TH(b—by) + -,

where b, maximizes f(y,-).
® Then, if the expansion about lA)y is accurate for all b,

~ 1 N N
f(y,b) = f(y, by)exp {—2(b —by)TH(b— by)} .
e \We find

d/2
R O

det(H)1/2
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Laplace approximation: alternative version

® \We have
f(y,b) = f(y)f(b]y).

* Now assume b | y is N(b,, H~1), and compute at b = b,

Fy. ) L (2m)??
by 1) 0P g

since

£(5 B 1  det(H)Y?2
by 1Y) = GoyaZae(my 12 = @mydz

® So really this amounts to approximating the conditional with a
Gaussian.
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Something different...

Quadrature is not always appropriate. E.g.,

high-dimensional integrals

non-smooth functions.

In quadrature we compute a weighted sum

N
Z W,'f(X,‘),
i=1

where x;, w; are fixed values.

A strange idea: what if we randomize the X; and just use
wi— 17
/— N .

Surprisingly, this can be a very good idea.
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Fundamental idea

® The fundamental idea behind Monte Carlo integration is to
view the integral of g over some set X

= /X g(x)dx,

as the expectation of a random variable.

® Find a PDF 7 such that 7(x) > 0 whenever g(x) # 0, then we
can write

| = /Xg(x)dx :/Xf(x)ﬂ(X)dX = E:[f(X)],

where f(x) = g(x)/m(x).
® Idea: simulate independent X; ~ 7, compute N~1 vazl f(Xi).

16 /29



Consistency, lack-of-bias

® Averages of i.i.d. random variables are simple to analyze!

e Consistency: if /| is finite,

N
% S F(X) —p BaF(X)] = 1.
i=1

o |ack-of-bias:
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Variance, CLT

® Variance: if var,(f) = E[f(X)?] — E;[f(X)]? < o0,

e CLT:

{N D (X } —q N (0, varg(f)).

Quantitative control from [ f(x)?m(x)dx.

Smoothness is irrelevant.

L?(r) is the space of finite variance functions under 7.
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Simple example

Let | = fol x2dx. Of course this is 1/3.
Let 7(x) =I(0 < x < 1), i.e. mis Uniform(0, 1).
Simulate Xy, ..., Xy ~ 7 independent and compute

1 N
o > X
i=1

® Variance is
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What about a different 77

Instead, consider m(x) = 2xI[(0 < x < 1).
Then we need f(x) = g(x)/7(x) = x?/(2x) = x/2 on (0,1).
Then simulate Xi, ..., Xy ~ 7 independent and compute

N
X;
2_:?

® Now variance is

12 1 1 (1 1 11
) oxdx — 24 LR e
/0(2) xax {/OX X} N{S 9} N 72

That's better!

1

N
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Importance sampling

* If we have | = [ f(x)m(x)dx, then importance sampling refers
to the identity

/:/ﬁ@m@w:/:/ammmmmw,

where w(x) = m(x)/u(x), and we assume p(x) > 0 whenever
m(x) > 0.

® Basically the same thing we did when coming up with

/é&sz/me@mx

e Often emphasis is on changing hard to sample 7 to easy to
sample p.

- Possibly consideration of several f's, hence the stronger
constraint.
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Optimal importance distribution
® Consider | = [ g(x)dx

® |mportance sampling variance is

e (o)

where the second term does not depend on p.

® Jensen's inequality gives

[ |G weroe= { [ 25

® Now observe that if u(x) = |g(x)|/ | |g(x)| dx then

e { ftrn]

so this is an optimal choice!

() dx}

[foorsf’
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Practical example

e Often we can't really go for optimality.
- Need to be able to actually sample according to .

e Consider 7 the density of some complicated distribution, e.g. a
Bayesian posterior density.

® If we believe 7 is close to Normal(m, X), we could take
@ = Normal(m, ¥).

® |n fact, we might take for m and ¥ the maximizer of 7 and
the inverse Hessian of log m at m.

- This is the Laplace approximation again!

® Try it in the lab...
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Self-normalized importance sampling |

® Try it in the lab...

® Except that we often don't know 7 precisely, but only up to a
normalizing constant.

® Posterior: 1
7(0) = fﬂo(H)L(H;y),

where Z = [ () L(6; y)d6.

® \We can compute unnormalized importance weights

w(0) = L(6;y) x

but not w(f) as we can't compute Z.
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Self-normalized importance sampling Il

 Consider general setting, [ f(x)m(x)dx the objective.
® Imagine we can simulate from p with W(x) o< m(x)/u(x).
® Then consider the identity

[ (x)pu(x)dx [ f(x) p(x)dx -
f()u(x)dx_fw()()dx _/f()()da

so we can approximate numerator and denominator on LHS!

® |.e., with samples X; ~ p independent, compute

REL SO0 Bl S0 S

1 i W(X)) i lw( -
where the self-normalized weights are:
W= WX)
Sy W(X))

e Cf. quadrature rules.
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Self-normalized importance sampling Il

® SNIS is feasible in many scenarios.

e Consistency follows from law of large numbers and continuous
mapping.
® Not unbiased in general.

e Asymptotic normality also holds:

N
{Z } — N(0, 0%(f)),

where | = [ f(x)m(x)dx and

26 /29



A measure of sample quality |

One simple measure of sample quality is the so-called “effective
sample size".

It was inspired originally by quantifying the ratio of asymptotic
variances with p and with 7.

But this is not what it actually approximates consistently...
It is (intentionally) function independent.

The effective sample size is the random variable

2

R ER>EL00)
{3, wix)2)

where the fractlon on the rlght tends to

— {J wO0Pn(dx) ! € (0.1]

The effective sample size takes values in [1, N].

En =
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A measure of sample quality I

® One interpretation:
() = [ (F() ~ P P(x)dx

< IR [ wiPiute)ax
112

0oSsc

R(m, p)’

and the effective sample size is an approximation of the
denominator.
® We also have a relationship to the y2-divergence between 7
and pu:
1

R =
(mom) =17 d.2(, 1)
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Wrapping up

® | ow-dimensional, smooth integrands: give quadrature a go!
e High-dimensional, L?() functions: give Monte Carlo a go!

e More seriously, these methods work for suitably simple
problems, which can arise in practice.

® When suitable, certainly easier to explain their use.

- Some statistical models have a lot more regularity than
arbitrary functions.

® For more challenging integrals, there are more advanced
Monte Carlo methods.

- Markov chains, interacting particles, diffusions, auxiliary
distributions, etc.
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