
Some other topics

Anthony Lee

December 2024

1 / 25

Outline

Introduction

Pseudorandom number generation

Sparse matrices

Parallel computing

Random algorithms

Recap

1 / 25

Outline

Introduction

Pseudorandom number generation

Sparse matrices

Parallel computing

Random algorithms

Recap

1 / 25

Introduction

• A few topics today:
- Pseudorandom number generators
- Sparse matrices
- Parallel computing
- Random algorithms

2 / 25

Outline

Introduction

Pseudorandom number generation

Sparse matrices

Parallel computing

Random algorithms

Recap

2 / 25

Pseudorandom number generation (PRNG)

• Computers typically use PRNGs in algorithms.
• They can produce new “seemingly” random numbers much

faster than external “truly” random sources.
• Old PRNGs are usually too simple.
- E.g., the linear congruential generators described in the notes.
• Things that matter: the period (samples before repeating) and

the quality.
• There are software packages that “test” whether random

numbers pass tests.
- Can be thought of as hypothesis tests with H0 being that the

numbers are i.i.d.

3 / 25

PRNGs: recent activity

• Until recently, the Mersenne Twister algorithm was very
popular and has a huge period of 219937 − 1.

• There has recently been a flurry of activity.
- Counter-based PRNGs (cryptographic-inspired).
- PCG Family: permuted congruential generators.
- xoshiro / xoroshiro.
- Lots more!
• Different PRNGs have different apparent strengths, including

speed.
• For parallel computing, useful to have skip-ahead functionality,

or allocate each thread a different block of a large orbit.

4 / 25

Outline

Introduction

Pseudorandom number generation

Sparse matrices

Parallel computing

Random algorithms

Recap

4 / 25

Sparse matrix computations

• Many statistical computations involve matrices which contain
very high proportions of zeroes: these are sparse matrices.

• Numerical linear algebra: most computations are additions,
subtractions and multiplications of pairs of numbers.

• There is no point doing the computations involving 0: answer
is known in advance.

• There is also no point storing the whole matrix; just store the
non-zero values and their locations.

• Example in notes: a design matrix combining two categorical
variables. Most entries are 0.

• Special routines for manipulating sparse matrices, e.g.
decompositions that preserve sparsity.

5 / 25

An example

• Consider a simple problem that helped create a big company.

Figure:
http://web.archive.org/web/19981202230410/http://www.google.com/

6 / 25

Ranking webpages

• Ranking based on the average occupation time of each
webpage for a random web surfer...

- with probability α follows links uniformly at random on the
page they are on?

- on a page with no links, sample a page from a fixed
distribution.

- with probability 1 − α samples a page from a given (possibly
personal) distribution.

7 / 25

The internet (some of it, anyway)

Figure: Source: Wikimedia commons

8 / 25

A stochastic matrix

• The relevant data is the n × n (directed) adjacency matrix A.
• A is a matrix of all zeros, except Aij = 1 if there is a link from

page i to page j .
• No self-links and A is a very sparse matrix.
• From this we create a substochastic matrix H via

Hij =
Aij∑n

k=1 Aik
,

if the denominator is positive and Hij = 0 otherwise.
• A stochastic matrix S is then defined via

S = H + dwT ,

where d is a binary vector with di = 1 if and only if∑n
k=1 Aik = 0, and w is some simple distribution.

9 / 25

Random surfer stochastic matrix
• S is the transition matrix of the random surfer who just

chooses links uniformly at random.
• Now we add the possibility of choosing from a

“personalization” distribution. Set

G = αS + (1 − α)1pT ,

where p is the personalization distribution, which we assume
satisfies pi > 0 for all i .

• A and hence H are sparse. But S and G are dense!
• To compute average occupation time, use Perron–Frobenius

for finite Markov chains:

µTGm → πT ,

where µ is an arbitrary probability distribution and π is the
(unique) stationary distribution given our assumptions.

• So we want to compute µTGm for large m.
10 / 25

Sparse power iteration

• How can we do this without ever constructing G? Use

νTG = µT
[
αS + (1 − α)1pT

]
= νT

[
αH + αdwT + (1 − α)1pT

]
= ανTH + α

(
νTd

)
wT + (1 − α)pT ,

to compute µk = µT
k−1G for k = 1, . . . ,m.

• The only matrix is the sparse matrix H, and the complexity is
O(#links + n).

• Example in lecture notes
- G would be 5 terabytes.
- It only takes seconds to compute π using above.

11 / 25

Outline

Introduction

Pseudorandom number generation

Sparse matrices

Parallel computing

Random algorithms

Recap

11 / 25

Why parallel computing?

• Traditionally, computing was largely serial.
• Algorithms designed to be run on a single machine in one

thread on one core on one processor.
• Operating systems allow several processes to run

simultaneously on one core.
• Think of your old personal computer: it looks like everything is

running simultaneously!
• Since 2000s, shift to more cores on processors.
- Physical limitations to making cores more powerful.
• GPUs are an extreme version of this.
• If time is the issue, need to compute in parallel!

12 / 25

How do algorithms run on a computer?

• A processor may have several cores.
• A core can execute instructions and access various forms of

memory, usually arranged in a hierarchy.
- Fast to slow: registers, caches, main memory, disk.
• A thread (of execution) is a sequence of instructions to be run

on a core.
• Multiple threads can be part of the same process, and can

thereby share resources with each other.
• Distinct processes do not share resources (at least directly).

13 / 25

Types of parallelism

• Running several processes in parallel (on one machine or
several).

- May have machines connected via a network, with messages
passed between them.

• Running several threads in parallel within a process (on one
machine).

• Coarse parallel computing: lots of independent computations
to do.

- Just run them all in parallel in different processes. Speedup is
simple.

- If processes require lots of memory, may need to look at
threads anyway.

14 / 25

Lightweight parallelism

• Say you need to compute several numbers in a for loop, all of
which are required for a subsequent step.

• Then several threads can be used to each do some of the
computations.

• They share memory and are relatively lightweight to
create/destory in comparison to processes.

• For GPUs, there are additional requirements for efficiency:
- More ALUs/FPUs, less flow control.
- Need blocks of computation to be identical, down to the

instructions.
- Also need memory to be laid out nicely for the computation.
• In practice, people use frameworks to assist with / avoid GPU

programming.

15 / 25

CPU vs GPU: transistor allocation

Figure: From https://docs.nvidia.com/cuda/cuda-c-programming-guide/.

16 / 25

Memory management

• High-level languages, e.g. R, Python.
- Often we do “weird” things to enable fast computation, e.g.

vectorizing computations in a way that necessitates the
construction and destruction of arrays.

- This is because we want to use “big” operations that have
been compiled into machine code.

• Instructions, from low-level languages like C and even Julia.
- For loops are ideal.
- Allocation of memory, e.g. for arrays is very slow.
• This is important in serial computation, but more problematic

in parallel.
• Try optimizing code in Julia or C and see the difference!

17 / 25

An idea of memory costs

• Rough speed of different types of memory access:
• L1 cache (around 64KB) reference: 0.5ns.
• L2 cache (around 256KB) reference: 7ns.
• Main memory (around 4–8GB) reference: 100ns.
• Disk seek: 10ms = 107ns.
• Solid State Drive: 0.1ms = 105 ns.

• By analogy:
• L1 cache: reaching for something on our desk (e.g. 1 second)
• L2 cache: fetching it instead from a drawer (14 seconds)
• Main memory: going up a set of stairs into another room to

fetch something (3 minutes, 20 seconds).
• Disk: walking from the University of Warwick to Cape Town

(South Africa) and back (5555 hours or 231 days).
• Solid state drive: walk to Brighton (55.55 hours or 2.31 days).

18 / 25

An idea of memory costs

• Rough speed of different types of memory access:
• L1 cache (around 64KB) reference: 0.5ns.
• L2 cache (around 256KB) reference: 7ns.
• Main memory (around 4–8GB) reference: 100ns.
• Disk seek: 10ms = 107ns.
• Solid State Drive: 0.1ms = 105 ns.

• By analogy:
• L1 cache: reaching for something on our desk (e.g. 1 second)
• L2 cache: fetching it instead from a drawer (14 seconds)
• Main memory: going up a set of stairs into another room to

fetch something (3 minutes, 20 seconds).
• Disk: walking from the University of Warwick to Cape Town

(South Africa) and back (5555 hours or 231 days).
• Solid state drive: walk to Brighton (55.55 hours or 2.31 days).

18 / 25

Complexity model

• Simple model we often use to talk about algorithmic
complexity:

- e.g. every operation (arithmetic, memory access, etc.) takes 1
unit of time.

• Obviously not always accurate for certain types of
computation.

• For multi-threaded computation, some speedup is lost to
overheads, synchronization, etc.

• In some cases, different algorithms are appropriate for parallel
computation.

19 / 25

Outline

Introduction

Pseudorandom number generation

Sparse matrices

Parallel computing

Random algorithms

Recap

19 / 25

Random algorithms

• These are algorithms that output (realizations of) random
variables.

• Not to be confused with randomized algorithms that are
“proper” algorithms:

- For a given input there is a specific output, like a function.
- Randomized may utilize randomness as a tool, e.g.

randomized quicksort.
• Technically, a random algorithm is just an algorithm with

additional random input.
• Lots of interesting questions about complexity of random vs

deterministic algorithms.

20 / 25

Checking matrix multiplication

• Say we have three n × n matrices A, B and C .
• We want to know if A× B = C .
• Basic deterministic algorithm: compute A× B in O(nα) time

and check.
- Best algorithm so far has α = 2.3727.
• We will look at a way to check A× B = C such that
- If A× B = C , it always return “yes”.
- If A× B ̸= C , it returns “no” with probability at least 1

2 , and
“yes” otherwise.

21 / 25

Freivalds’ algorithm

• If AB = C , then

ABx = A(Bx) = Cx .

• So to check that AB = C we will generate a uniformly random
binary vector ξ ∈ {0, 1}n.

• Then we compute A(Bξ) and Cξ and return “yes” if all
elements are equal and “no” otherwise.

• This takes O(n2) time.
• If AB = C then clearly we will always answer “yes”.

22 / 25

When AB ̸= C
• We check ABξ = Cξ for ξ ∼ Uniform({0, 1}n).
• This is like computing r = (AB − C)ξ and checking if r = 0.
• If AB ̸= C then D = (AB − C) has a non-zero element.
• Let dij be a nonzero element of D. We will look at

ri =
n∑

k=1

dikξk = dijξj +
n∑

k=1,k ̸=j

dikξk = dijξj + Y .

• Now, P (Ri = 0) is equal to

P (Ri = 0|Y = 0)P (Y = 0) + P (Ri = 0|Y ̸= 0)P (Y ̸= 0) .

• But P (Ri = 0|Y = 0) = P (ξi = 0) = 1
2 and

P (Ri = 0|Y ̸= 0) ≤ P (ξi = 1) = 1
2 .

• So

Pr (Ri = 0) ≤ 1
2
[Pr (Y = 0) + Pr (Y ̸= 0)] =

1
2
.

23 / 25

When AB ̸= C

• When AB ̸= C , we will return “no” with probability at least 1
2 .

• Therefore, we can repeat the procedure k times.
• The probability that we do not observe a “no” but AB ̸= C is

less than 2−k .
• If we do observe a “no” we can output “no” and we are always

right.

24 / 25

Outline

Introduction

Pseudorandom number generation

Sparse matrices

Parallel computing

Random algorithms

Recap

24 / 25

Wrapping up

• There are lots of topics we have note covered.
• Unfortunately, many of these will be important to you!
• Hopefully some coverage of fundamental ideas.
• For research, we have to learn what is required to make

progress.
• Feedback welcome!

25 / 25

	Introduction
	Pseudorandom number generation
	Sparse matrices
	Parallel computing
	Random algorithms
	Recap

