Some other topics

Anthony Lee

December 2024

1/25

Outline

Introduction
Pseudorandom number generation
Sparse matrices

Parallel computing

Random algorithms

Recap

1/25

Outline

Introduction

1/25

Introduction

A few topics today:
- Pseudorandom number generators
- Sparse matrices

- Parallel computing

Random algorithms

2/25

Outline

Pseudorandom number generation

2/25

Pseudorandom number generation (PRNG)

e Computers typically use PRNGs in algorithms.

® They can produce new “seemingly” random numbers much
faster than external “truly’” random sources.

e Old PRNGs are usually too simple.

- E.g., the linear congruential generators described in the notes.

® Things that matter: the period (samples before repeating) and
the quality.

® There are software packages that “test” whether random
numbers pass tests.

- Can be thought of as hypothesis tests with Hy being that the
numbers are i.i.d.

3/25

PRNGs: recent activity

® Until recently, the Mersenne Twister algorithm was very
popular and has a huge period of 219937 — 1.

e There has recently been a flurry of activity.

- Counter-based PRNGs (cryptographic-inspired).
- PCG Family: permuted congruential generators.
- xoshiro / xoroshiro.

- Lots more!

e Different PRNGs have different apparent strengths, including
speed.

e For parallel computing, useful to have skip-ahead functionality,
or allocate each thread a different block of a large orbit.

4/25

Outline

Sparse matrices

4/25

Sparse

matrix computations

Many statistical computations involve matrices which contain
very high proportions of zeroes: these are sparse matrices.

Numerical linear algebra: most computations are additions,
subtractions and multiplications of pairs of numbers.

There is no point doing the computations involving 0: answer
is known in advance.

There is also no point storing the whole matrix; just store the
non-zero values and their locations.

Example in notes: a design matrix combining two categorical
variables. Most entries are 0.

Special routines for manipulating sparse matrices, e.g.
decompositions that preserve sparsity.

5/25

An example

e Consider a simple problem that helped create a big company.

Google!

BETA

Search the web using Google!

Google Search | I'm feeling lucky |

Special Searches
Snford Searc

Copyright ©1998 Gaogle Inc

Figure:
http://web.archive.org/web/19981202230410/http://www.google.com/

6/25

Ranking webpages

® Ranking based on the average occupation time of each
webpage for a random web surfer...

- with probability « follows links uniformly at random on the
page they are on?

- on a page with no links, sample a page from a fixed
distribution.

- with probability 1 — o samples a page from a given (possibly

personal) distribution.

7/25

The internet (some of it, anyway)

B

Figure: Source: Wikimedia commons

8/25

A stochastic matrix

® The relevant data is the n x n (directed) adjacency matrix A.

® Ais a matrix of all zeros, except Aj; = 1 if there is a link from
page /i to page J.

® No self-links and A is a very sparse matrix.

® From this we create a substochastic matrix H via
Ay

=

Y A

if the denominator is positive and H;; = 0 otherwise.

H

® A stochastic matrix S is then defined via
S=H+dw',

where d is a binary vector with d; = 1 if and only if
> k1 Aik =0, and w is some simple distribution.

9/25

Random surfer stochastic matrix
® S is the transition matrix of the random surfer who just
chooses links uniformly at random.

® Now we add the possibility of choosing from a
“personalization” distribution. Set

G=aS+(1-a)lp’,

where p is the personalization distribution, which we assume
satisfies p; > 0 for all J.
® A and hence H are sparse. But S and G are dense!

® To compute average occupation time, use Perron—Frobenius
for finite Markov chains:

p'G™m =,

where i is an arbitrary probability distribution and 7 is the
(unique) stationary distribution given our assumptions.
® So we want to compute p’ G™ for large m.

10/ 25

Sparse power iteration

® How can we do this without ever constructing G? Use
v G=nu'" [ozS +(1- a)lpT}
Syl {aH + adw™ + (1 - a)lpT}

=av'H+« (I/Td> wlh +(1-a)p’,

to compute py = M[_IG fork=1,...,m.
® The only matrix is the sparse matrix H, and the complexity is
O(#links + n).

Example in lecture notes

G would be 5 terabytes.

It only takes seconds to compute 7 using above.

11/25

Outline

Parallel computing

11/25

Why parallel computing?

® Traditionally, computing was largely serial.

e Algorithms designed to be run on a single machine in one
thread on one core on one processor.

® QOperating systems allow several processes to run
simultaneously on one core.

e Think of your old personal computer: it looks like everything is
running simultaneously!

® Since 2000s, shift to more cores on processors.
- Physical limitations to making cores more powerful.
® GPUs are an extreme version of this.

e If time is the issue, need to compute in parallel!

12/25

How do algorithms run on a computer?

® A processor may have several cores.

® A core can execute instructions and access various forms of
memory, usually arranged in a hierarchy.

Fast to slow: registers, caches, main memory, disk.

A thread (of execution) is a sequence of instructions to be run
on a core.

Multiple threads can be part of the same process, and can
thereby share resources with each other.

Distinct processes do not share resources (at least directly).

13/25

Types of parallelism

® Running several processes in parallel (on one machine or
several).

- May have machines connected via a network, with messages
passed between them.

® Running several threads in parallel within a process (on one
machine).

e Coarse parallel computing: lots of independent computations
to do.

- Just run them all in parallel in different processes. Speedup is
simple.

- If processes require lots of memory, may need to look at
threads anyway.

14 /25

Lightweight parallelism

® Say you need to compute several numbers in a for loop, all of
which are required for a subsequent step.

® Then several threads can be used to each do some of the
computations.

® They share memory and are relatively lightweight to
create/destory in comparison to processes.

® For GPUs, there are additional requirements for efficiency:
- More ALUs/FPUs, less flow control.

- Need blocks of computation to be identical, down to the
instructions.

- Also need memory to be laid out nicely for the computation.

® In practice, people use frameworks to assist with / avoid GPU
programming.

15/25

CPU vs GPU: transistor allocation

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

L2 Cache

DRAM

cpPU GPU

Figure: From https://docs.nvidia.com/cuda/cuda-c-programming-guide/.

16 /25

Memory management

® High-level languages, e.g. R, Python.

- Often we do “weird" things to enable fast computation, e.g.
vectorizing computations in a way that necessitates the
construction and destruction of arrays.

- This is because we want to use “big" operations that have
been compiled into machine code.

® |nstructions, from low-level languages like C and even Julia.
- For loops are ideal.
- Allocation of memory, e.g. for arrays is very slow.

® This is important in serial computation, but more problematic
in parallel.

® Try optimizing code in Julia or C and see the difference!

17/25

An idea of memory costs

® Rough speed of different types of memory access:

® L1 cache (around 64KB) reference: 0.5ns.

L2 cache (around 256KB) reference: 7ns.

Main memory (around 4-8GB) reference: 100ns.
Disk seek: 10ms = 10"ns.

Solid State Drive: 0.1ms = 10° ns.

18/25

An idea of memory costs

® Rough speed of different types of memory access:
® L1 cache (around 64KB) reference: 0.5ns.

L2 cache (around 256KB) reference: 7ns.

Main memory (around 4-8GB) reference: 100ns.

Disk seek: 10ms = 10"ns.

Solid State Drive: 0.1ms = 10° ns.

® By analogy:

® L1 cache: reaching for something on our desk (e.g. 1 second)
L2 cache: fetching it instead from a drawer (14 seconds)
Main memory: going up a set of stairs into another room to
fetch something (3 minutes, 20 seconds).
Disk: walking from the University of Warwick to Cape Town
(South Africa) and back (5555 hours or 231 days).
Solid state drive: walk to Brighton (55.55 hours or 2.31 days).

18/25

Complexity model

® Simple model we often use to talk about algorithmic
complexity:

- e.g. every operation (arithmetic, memory access, etc.) takes 1
unit of time.

e Obviously not always accurate for certain types of
computation.

® For multi-threaded computation, some speedup is lost to
overheads, synchronization, etc.

® |n some cases, different algorithms are appropriate for parallel
computation.

19/25

Outline

Random algorithms

19/25

Random algorithms

® These are algorithms that output (realizations of) random
variables.

® Not to be confused with randomized algorithms that are
“proper” algorithms:

- For a given input there is a specific output, like a function.

- Randomized may utilize randomness as a tool, e.g.
randomized quicksort.

e Technically, a random algorithm is just an algorithm with
additional random input.

® | ots of interesting questions about complexity of random vs
deterministic algorithms.

20 /25

Checking matrix multiplication

® Say we have three n x n matrices A, B and C.
® We want to know if A x B = C.

® Basic deterministic algorithm: compute A x B in O(n®) time
and check.

- Best algorithm so far has @ = 2.3727.
e We will look at a way to check A x B = C such that
- If Ax B = C, it always return “yes".

- If Ax B # C, it returns “no” with probability at least % and
“yes" otherwise.

21/25

Freivalds" algorithm

e |f AB = C, then
ABx = A(Bx) = Cx.
® So to check that AB = C we will generate a uniformly random
binary vector £ € {0,1}".

® Then we compute A(BE) and C¢ and return “yes” if all
elements are equal and “no” otherwise.

® This takes O(n?) time.

e |f AB = C then clearly we will always answer “yes".

22/25

When AB # C
e We check AB¢ = C¢ for £ ~ Uniform({0,1}").
This is like computing r = (AB — C)¢ and checking if r = 0.
If AB # C then D = (AB — C) has a non-zero element.
Let djj be a nonzero element of D. We will look at

Z dixé = di&j + Z dixb = diéj+ Y.

k=1,k#j

Now, P (R; = 0) is equal to

P(Ri =0lY =0)P(Y=0)+P(Ri =0]Y #0)P(Y #0).
)
1
2

But P(R; = 0|Y = 0) = P (¢ =0
P(Ri=0lY#0)<P({=1)=
* So

_1
= 5 and

Pr(Ri=0) < 3 [Pr(Y =0) + Pr(Y #0)] = 5

23/25

When AB # C

When AB # C, we will return “no” with probability at least %

Therefore, we can repeat the procedure k times.

The probability that we do not observe a “no” but AB # C is
less than 27k.

If we do observe a “no” we can output “no” and we are always
right.

24 /25

Outline

Recap

24 /25

Wrapping up

There are lots of topics we have note covered.

Unfortunately, many of these will be important to you!

Hopefully some coverage of fundamental ideas.

For research, we have to learn what is required to make
progress.

Feedback welcome!

25 /25

	Introduction
	Pseudorandom number generation
	Sparse matrices
	Parallel computing
	Random algorithms
	Recap

