
APTS Statistical Computing 2024/25:
Practical Lab 1 (Tuesday)

Here are some practical problems which aim to explore and reinforce some of the course material. Several
problems here use simulated data: when developing statistical modelling code, it is often best to start out with data
where you know what the truth is (and can generate further replicates). Do not consult the solutions1 until you’ve
made good attempts.

1. PCA via SVD The principal components analysis (PCA) of a multivariate data set was traditionally based on
the eigen-decomposition of the sample covariance matrix of the data. The matrix of eigenvectors can be used to
rotate the (centred) data observations to a set of uncorrelated random quantities ordered by decreasing variance.
These rotated data are often known as the scores. We can write a small function to implement this as follows:

pcScoresEig = function(X) {
Xc = sweep(as.matrix(X), 2, colMeans(X))
eig = eigen(crossprod(Xc)/(nrow(Xc)-1), symmetric=TRUE)
Xc %*% eig$vectors

}

Look at the notes/slides to make sure you understand what this function is doing. We can test it on the Iris
flower data (see ?iris), as follows:

Xi = iris[,-5] # We exclude the 5th column, which is not numerical
scores = pcScoresEig(Xi)
plot(scores[,1], scores[,2], col=iris[,5], pch=19)

−3 −2 −1 0 1 2 3 4

−
1.

0
0.

0
0.

5
1.

0

scores[, 1]

sc
or

es
[,

2]

1Solutions will be made available from the course website before the end of the session.

1

This is essentially how the princomp function in R is implemented, and we can verify this:

head(scores, 3)

[,1] [,2] [,3] [,4]
[1,] -2.684126 0.3193972 -0.02791483 0.002262437
[2,] -2.714142 -0.1770012 -0.21046427 0.099026550
[3,] -2.888991 -0.1449494 0.01790026 0.019968390

head(princomp(Xi)$scores, 3)

Comp.1 Comp.2 Comp.3 Comp.4
[1,] -2.684126 0.3193972 0.02791483 0.002262437
[2,] -2.714142 -0.1770012 0.21046427 0.099026550
[3,] -2.888991 -0.1449494 -0.01790026 0.019968390

(a) It turns out that the singular value decomposition of the (centred) data matrix can be used to construct the
scores directly as UD. Look at the notes/slides and think about why this is true, and write an R function,
pcScoresSvd to implement this. Test it on the iris data, and don’t worry about sign flipping (the sign
of the score vectors is arbitrary).

Xc = UDV' => Xc'Xc = VD^2V' which is the symmetric eigen decomp
So XcV = UDV'V = UD.

pcScoresSvd = function(X) {
Xc = sweep(as.matrix(X), 2, colMeans(X))
svx = svd(Xc)
t(t(svx$u)*svx$d) ## UD

}
scores2 <- pcScoresSvd(Xi)
scores2 <- scores2 %*% diag(sign(scores[1,])*sign(scores2[1,])) # Ensure same sign for comparison
plot(scores2[,1], scores2[,2], col=iris[,5], pch=19)

2

−3 −2 −1 0 1 2 3 4

−
1.

0
0.

0
0.

5
1.

0

scores2[, 1]

sc
or

es
2[

, 2
]

(b) This SVD-based method is more numerically stable than the eigendecomposition method, although if we
are only interested in the first few components that is rarely a big deal. In the case of wide data (p > n)
SVD can also be substantially more efficient. It also gives some additional insight into what the PCA
“means”. This is essentially how the prcomp function in R is implemented (which is almost always
preferred to the princomp function). Compare your function with this (again, do not worry about the
sign).

head(scores2, 3)

[,1] [,2] [,3] [,4]
[1,] -2.684126 0.3193972 -0.02791483 0.002262437
[2,] -2.714142 -0.1770012 -0.21046427 0.099026550
[3,] -2.888991 -0.1449494 0.01790026 0.019968390

head(prcomp(Xi)$x, 3)

PC1 PC2 PC3 PC4
[1,] -2.684126 -0.3193972 0.02791483 0.002262437
[2,] -2.714142 0.1770012 0.21046427 0.099026550
[3,] -2.888991 0.1449494 -0.01790026 0.019968390

(c) Simulate some random (eg.) 5, 000× 1, 000 test data, and time your two implementations.

X = matrix(rnorm(5000*1000),ncol=1000)
system.time(pcScoresEig(X))

user system elapsed
7.485 0.031 7.518

3

system.time(pcScoresSvd(X))

user system elapsed
13.910 0.089 13.999

(d) Think about how to use the SVD to compute the empirical variances or standard deviations of the scores,
then create a function that takes as input the data matrix X and that uses its SVD to compute the standard
deviations of the scores. Check it against prcomp for the iris data to make sure you’ve done it correctly.

Xc = UDV' => UD = XcV
So cov(UD) = V'cov(Xc)V. Substituting the empirical
cov(Xc) = Xc'Xc/(n-1), we have cov(UD) = V'Xc'XcV/(n-1) = V'VD^2V'V/(n-1)
= D^2/(n-1). i.e. the singular values over sqrt(n-1) give the sd prcomp.

pcSdsSvd = function(X) {
Xc = sweep(as.matrix(X), 2, colMeans(X))
SVD = svd(Xc)
SVD$d/sqrt(nrow(Xc)-1)

}
pcSdsSvd(Xi)

[1] 2.0562689 0.4926162 0.2796596 0.1543862

prcomp(Xi)$sd

[1] 2.0562689 0.4926162 0.2796596 0.1543862

2. Ridge Regression. For a linear regression model,

y = Xβ + ε

we know that the quadratic loss L0(β) = ‖ε‖2 = εTε is minimised wrt β when β is a solution to the normal
equations,

XTXβ = XTy.

In ridge regression, the slightly modified quadratic loss function Lλ(β) = ‖ε‖2 + λ‖β‖2 is used, for some
ridge penalty λ > 0, which encourages shrinkage of the regression coefficients towards zero.

(a) Show that for a given fixed λ > 0, the loss Lλ(β) is minimised when β is a solution to

(XTX+ λI)β = XTy.

L = e'e + lb'b = (y-Xb)'(y-Xb) + lb'b = y'y - 2b'X'y + b'X'Xb + lb'b
gradient of L = -2X'y + 2X'Xb + 2lb = -2X'y + 2(X'X + lI)b
So gradient of L = 0 => (X'X + lI)b = X'y

(b) Starting from the singular value decomposition, X = UDVT, show that the optimal β̂λ can be written as

β̂λ = VDλU
Ty,

4

where Dλ is a diagonal matrix with entries dλi = di/(d
2
i + λ). Note that this means β̂λ can be computed

for as many different λ as desired, all for the cost of one single expensive SVD operation.

(X'X + lI)b = X'y
=> (VDU'UDV' + lI)b = VDU'y
=> (VDDV' + lI)b = VDU'y
=> V(DD + lI)V'b = VDU'y
=> b = V(DD + lI)^{-1}DU'y
=> b = V[(DD + lI)^{-1}D]U'y
=> b = VEU'y, where diagonal E = (DD + lI)^{-1}D

(c) In practice, both the data, y, and the covariate matrix X are centred before ridge regression is applied,
since then the model can be fit without an intercept, and typically you would not want to shrink the
intercept. Write a function,

ridge(y, X, lambda)

which expects an n-vector y, an n × p matrix X, and a q-vector of λ values where the ridge solution is
required. The function should return a p × q matrix of ridge regression parameters, with each column
representing a solution for a given λ.

ridge = function(y, X, lambda) {
y = y - mean(y)
X = sweep(as.matrix(X), 2, colMeans(X))
SVD = svd(X)
uty = as.vector(t(SVD$u) %*% y)
D = outer(SVD$d, lambda, function(d,l){d/(d*d+l)})
SVD$v %*% (D * uty) # 1st product is matrix, 2nd is elementwise

}

(d) For the trees dataset, regress volume on the other two variables for a range of shrinkage parameters.

ridge(trees[,3], trees[,1:2], c(0,exp(0:5)))

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 4.7081605 4.6868475 4.6507090 4.5554535 4.3166299 3.7858307 2.8648009
[2,] 0.3392512 0.3444192 0.3531561 0.3760244 0.4322559 0.5504595 0.7226325

Ensure that your solution matches up with that of lm in the case λ = 0.

lm(as.vector(trees[,3]) ~ as.matrix(trees[,1:2]))$coefficients

(Intercept) as.matrix(trees[, 1:2])Girth
-57.9876589 4.7081605
as.matrix(trees[, 1:2])Height
0.3392512

3. Interactively exploring optimisation routines. For this exercise, we will use the FLtools package from:

https://bitbucket.org/finnlindgren/FLtools/

developed by Finn Lindgren (a previous lecturer for this course). You can install it with:

5

https://bitbucket.org/finnlindgren/FLtools/

library(devtools)
devtools::install_bitbucket("finnlindgren/FLtools")

If you don’t have the devtools package, first install it with:

install.packages("devtools")

Once you have installed the FLtools package, you should be able to load it with

library(FLtools)

Make sure you have this package installed before proceeding to the next step.

(a) Start the optimisation shiny app:

FLtools::optimisation()

This should start a Shiny web application. It will also attempt to start up a tab in your browser connected
to the session. If this doesn’t work, just connect your browser to the URL of the Shiny app. Make sure the
Shiny app is running in a browser window before proceeding to the next step.

(b) For the "Simple (1D)" and "Simple (2D)" functions, familiarise yourself with the "Step", "Converge", and
"Reset" buttons.

(c) Choose different optimisation starting points by clicking in the figure.

(d) Explore the different optimisation methods and what they display in the figure for each optimisation
step234. Also observe the diagnostic output box and how the number of function, gradient, and Hessian
evaluations differ between the methods.

(e) For the "Rosenbrock (2D)" function, observe the differences in convergence behaviour for the four differ-
ent optimisation methods.

(f) For the "Multimodal" functions, explore how the optimisation methods behave for different starting points.

(g) How far out can the optimisation start for the "Spiral" function? E.g., try the "Newton" method, starting
in the top right corner of the figure.

4. Write your own code to optimise Rosenbrock’s function

f(x, z) = 100(z − x2)2 + (1− x)2

by Newton’s method. In particular, create the function:

newton_step <- function(x0, f, gf, hf, mh = 5, me=0.0001)

where:

• x0 is the initial point;
2LS stands for “line search”.
3The simplex/triangle shapes are shown for each "Simplex" method step in blue. The "best" points for each simplex are connected (magenta).
4The Newton methods display the true quadratic Taylor approximations (red) as well as the approximations used to find the proposed steps

(blue).

6

https://shiny.rstudio.com/

• f is a function that evaluates f(x, z);

• gf returns the gradient of f(x, z);

• hf returns the Hessian of f(x, z);

• mh is the maximum number of step-halving step use during back-tracking;

• me is the value at which any Hessian eigenvalue falling between 0 and me should be fixed.

Your function should return the estimated minimiser [x∗, y∗] of the Rosenbrock function. Make sure that your
function implements backtracking for step-length selection and that the Hessian is perturbed to positive defi-
niteness. Ensure that you have implemented it correctly by comparing your output (and implementation) with
that of the Shiny app from the first exercise.

One step of a Newton method
newton_step <- function(x0, f, gf, hf, mh=5, me=0.0001) {

h0 = hf(x0) # raw hessian
eig = eigen(h0, symmetric=TRUE)
e0 = eig$values # raw e-vals
e1 = abs(e0) # flip negative e-vals
e1[e1 < me] = me # inflate small e-vals
since we have eigendecomposition, directly compute Newton step
ei = 1/e1 # eigenvalues of inverse
delta = -(eig$vectors %*% (ei * (t(eig$vectors) %*% gf(x0))))
x1 = x0 + delta
if (f(x1) > f(x0)) {

for (i in 1:mh) {
delta = delta / 2 # halve step length
x1 = x0 + delta
if (f(x1) < f(x0)) return(x1)

}
warning("Newton step didn't descend.")

}
x1

}

Newton iteration
newton <- function(x0, f, gf, hf, mi=100, eps=1e-10, plt=FALSE, ...) {

x = x0
for (i in 1:mi) {

x = newton_step(x, f, gf, hf, ...)
if (plt) {

lines(c(x0[1],x[1]), c(x0[2],x[2]), col=2)
message(paste(i, " "), appendLF=FALSE)
print(x)

}
mixed relative/absolute convergence check
if (sum(abs(x-x0)) < eps*sum(abs(x0)) + eps) return(x)
x0=x

}

7

warning("Max iterations exceeded before convergence.")
x

}

Application to the Rosenbrock function

Define function
rb <- function(x,z) {
100*(z-x^2)^2 + (1-x)^2

}
Clearly has min value of 0 at (1,1)

Plot contours of the function (logged)
n <- 100
x <- seq(-1.5,1.5,length=n)
z <- seq(-.5,1.5,length=n)
f <- outer(x,z,rb)
contour(x,z,matrix(log10(f),n,n),levels=(1:10/2))

Gradient
rb.grad <- function(x,z) {
g <- rep(NA,2)
g[1] <- 400*(x^3-z*x) + 2*(x-1)
g[2] <- 200*(z-x^2)
g

}

Hessian
rb.hess <- function(x,z) {
H <- matrix(NA,2,2)
H[1,1] <- 1200*x^2 - 400*z + 2
H[2,1] <- H[1,2] <- -400*x
H[2,2] <- 200
H

}

Versions with a single vector argument:
rbv <- function(x) rb(x[1],x[2])
rbg <- function(x) rb.grad(x[1],x[2])
rbh <- function(x) rb.hess(x[1],x[2])

xx <- newton(c(-.5,1), rbv, rbg, rbh, plt=TRUE)

1

[,1]
[1,] -1.0873529
[2,] 0.5498683

8

2

[,1]
[1,] -1.070981
[2,] 1.146732

3

[,1]
[1,] -0.8252801
[2,] 0.6204839

4

[,1]
[1,] -0.6861652
[2,] 0.4514698

5

[,1]
[1,] -0.5130686
[2,] 0.2236005

6

[,1]
[1,] -0.34358995
[2,] 0.08933102

7

[,1]
[1,] -0.14438037
[2,] -0.01883876

8

[,1]
[1,] -0.01632909
[2,] -0.01613049

9

[,1]
[1,] 0.221162804
[2,] -0.007489412

10

9

[,1]
[1,] 0.28458355
[2,] 0.07696561

11

[,1]
[1,] 0.4828215
[2,] 0.1918072

12

[,1]
[1,] 0.5386610
[2,] 0.2870376

13

[,1]
[1,] 0.6807331
[2,] 0.4416540

14

[,1]
[1,] 0.7404237
[2,] 0.5446642

15

[,1]
[1,] 0.8919928
[2,] 0.7726780

16

[,1]
[1,] 0.9112983
[2,] 0.8300919

17

[,1]
[1,] 0.9938468
[2,] 0.9809172

18

10

[,1]
[1,] 0.9964510
[2,] 0.9929077

19

[,1]
[1,] 0.9999952
[2,] 0.9999778

20

[,1]
[1,] 1
[2,] 1

21

[,1]
[1,] 1
[2,] 1

22

11

 0.5

 1

 1

 1.5

 1.5

 1.5 2

 2

 2

 2.5

 2
.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

[,1]
[1,] 1
[2,] 1

print(xx)

[,1]
[1,] 1
[2,] 1

print(rbv(xx))

12

[1] 0

13

