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We derive the first explicit bounds for the spectral gap of a random walk
Metropolis algorithm on R

d for any value of the proposal variance, which
when scaled appropriately recovers the correct d−1 dependence on dimension
for suitably regular invariant distributions. We also obtain explicit bounds on
the L2-mixing time for a broad class of models. In obtaining these results,
we refine the use of isoperimetric profile inequalities to obtain conductance
profile bounds, which also enable the derivation of explicit bounds in a much
broader class of models. We also obtain similar results for the preconditioned
Crank–Nicolson Markov chain, obtaining dimension-independent bounds un-
der suitable assumptions.
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1. Introduction.

1.1. Results for Metropolis Markov chains. Let π be a probability distribution on (E,E ),
where E = R

d and E denotes its Borel σ -algebra, and suppose we seek to approximately
sample from π . Markov chain Monte Carlo (MCMC) algorithms address this problem by
simulating an ergodic, time-homogeneous Markov chain (Xn)n∈N with invariant distribution
π . One of the most simple and yet enduringly popular MCMC algorithms is the Metropolis
algorithm of Metropolis et al. (1953). Assuming that π has density � = dπ/dν with respect
to some σ -finite measure ν, and Q is a ν-reversible Markov kernel, a Metropolis Markov
kernel may be written

(1) P(x,A)=
∫
A

Q(x,dy)α(x, y)+ 1A(x)ᾱ(x), x ∈ E,A ∈ E ,

where for x, y ∈ E,

(2) α(x, y) :=min
{

1,
�(y)

�(x)

}
, ᾱ(x) := 1− α(x), α(x) :=

∫
E
Q(x,dy)α(x, y).

In many applications, Q(x, ·) is a multivariate normal distribution with mean x and covari-
ance matrix σ 2 · Id , where Id is the identity matrix, in which case ν is the Lebesgue measure
and P is the Random–Walk Metropolis (RWM) Markov kernel. Despite its simplicity, the
RWM algorithm is known to perform very well for certain classes of target distributions, and
furthermore to be a robust algorithm (see, e.g., Chen et al. (2020), Christensen, Roberts and
Rosenthal (2005), Livingstone and Zanella (2022), Roberts, Gelman and Gilks (1997)). In
this paper, quantitative analysis of the L2-mixing time and spectral gap of the RWM Markov
chain is the primary application, with a particular emphasis on the dependence of these quan-
tities on dimension. This analysis relies on a more general theory applicable beyond the
specific scenarios considered here; see Section 1.2.

For a given target distribution π , after fixing the coordinate system, the only tuning param-
eter of the RWM kernel is the proposal variance σ 2. It is well known that if σ 2 is too large,
then the acceptance function α will deteriorate, and the Markov chain will tend to get “stuck”
for long periods. On the other hand, if σ 2 is too small, then the Markov chain will tend to
make very small steps. Both of these regimes correspond intuitively to slow convergence
of the Markov chain. In the celebrated optimal scaling paper of Roberts, Gelman and Gilks
(1997), it was shown, for a fairly restrictive class of target distributions, that the proposal
variance σ 2 of RWM on R

d should scale like d−1 to obtain a stable acceptance ratio in the
high-dimensional limit, and that the complexity of sampling depends linearly on dimension,
via a particular but indicative weak convergence result to a Langevin diffusion. In this paper,
we study the high-dimensional properties of the RWM algorithm from a different angle: we
seek to explicitly bound the spectral gap of the RWM kernel in arbitrary dimension d and for
any value of σ 2. For appropriately regular distributions, we find that scaling σ 2 as d−1 does
indeed imply a spectral gap that is precisely of order d−1, and that this choice of polynomial
scaling is optimal. The following is a combination of Corollary 35 and Theorem 46:
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THEOREM 1. Let π have density π(x)∝ exp(−U(x)) with respect to Lebesgue measure
on R

d , where the potential U is L-smooth, m-strongly convex and twice continuously differ-
entiable. If P is the π -reversible RWM kernel with N (0, σ 2 · Id) proposal increments, then
the spectral gap γP of P satisfies

(3) C ·L · d · σ 2 · exp
(−2 ·L · d · σ 2) · m

L
· 1

d
≤ γP ≤min

{
1

2
·L · σ 2,

(
1+m · σ 2)−d/2

}
,

where C = 1.972× 10−4.

Twice continuous differentiability of U is only used to obtain the upper bound. For some
intuition, densities with m-strongly convex and L-smooth potentials U can be sandwiched
between N (x∗,L−1 · Id) and N (x∗,m−1 · Id), up to constant factors, where x∗ is the maxi-
mizer of the density of π ; see Lemma 42.

Both the lower and upper bounds in (3) demonstrate that taking σ 2 too small or too large
causes γP to decrease. The lower bound in (3) is maximized by taking σ 2 = 1/(2 ·L ·d), while
the rate at which the upper bound decreases with d is also minimized, among polynomial
scalings, by scaling σ 2 with d−1. Taking σ = ς · L−1/2 · d−1/2 for any constant ς > 0, we
obtain

(4) C · ς2 · exp
(−2 · ς2) · m

L
· 1

d
≤ γP ≤ ς2

2
· 1

d
,

so the O(d−1) dimension dependence is tight. The lower bound is maximized by taking
ς2 = 1

2 , although it is unlikely that this is optimal in practice due to the results of Roberts,
Gelman and Gilks (1997). Similarly, it seems likely that the optimal value of C is possibly a
few orders of magnitude larger.

We also study the L2-convergence complexity of the RWM Markov chain, noting that
convergence can initially be faster than that indicated by the spectral gap alone and this turns
out to be crucial to establish our dimension dependence results for m-strongly convex and L-
smooth potentials. Under the same conditions as Theorem 1 and taking σ = ς ·L−1/2 · d−1/2

as above, we obtain that for at least two types of feasible initial distribution μ (see Theorem 49
and Remarks 50 and 51) one may take

n ∈O
(
exp
(
2 · ς2) · ς−2 · κ · d · {logd + logκ + log

(
ε−1

Mix

)})
,

and obtain χ2(μP n,π) ≤ εMix, where χ2(μ, ν) denotes the χ2 divergence between μ and
ν and κ := L/m is the condition number. In contrast, an analysis based only on the spectral
gap bound γP ∈�(1/(κ · d)) would suggest a mixing time in O(d2κ logκ).

In practice, fluctuations of ergodic averages of f ∈ L2(π) are also of interest, and one may
consider the asymptotic variance, given by

var(P,f ) := lim
n→∞n · var

(
1

n

n∑
i=1

f (Xi)

)
,

where X0 ∼ π . We show in Proposition 48 that with σ = ς ·L−1/2 · d−1/2,

var(P,f )≤ 10141 · ς−2 · exp
(
2 · ς2) · κ · d · ‖f ‖2

2, ς > 0.

We also show that linear functions satisfy var(P,f )≥ 2 · ς−2 · d · ‖f ‖2
2.

We also analyze the preconditioned Crank–Nicolson (pCN) Markov chain via essentially
analogous theory to the RWM chain, since it is also a Metropolis Markov chain. For example,
we show in Theorem 54 if π(dx)∝N (dx;0,C) exp(−(x)) with  convex, L-smooth and
minimized at x = 0 then an appropriately tuned pCN Markov chain’s spectral gap satisfies

γP ≥ 3.62784× 10−5 · (L · Tr(C)
)−1

,

giving dimension-independent bounds when L ·Tr(C) is bounded independent of dimension.
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To prove these results we apply a general result, Theorem 18, which requires quantitative
lower bounds on the isoperimetric profile of π for some metric d, complemented with a
quantitative close coupling condition for P :

DEFINITION 2 (Close coupling). For a metric d on E and ε, δ > 0, a Markov kernel P

evolving on E is (d, δ, ε)-close coupling if

d(x, y)≤ δ ⇒ ∥∥P(x, ·)− P(y, ·)∥∥TV ≤ 1− ε, x, y ∈ E.

This is to be contrasted with what is known about the overdamped Langevin diffusion,
which solves the stochastic differential equation

dXt =∇ logπ(Xt)dt +√2 · dWt,

for which knowledge of the isoperimetric profile alone can provide information on its con-
vergence. For example, the overdamped Langevin diffusion is associated with the classical
Dirichlet form f �→ π(|∇f |2); (see, e.g., Pavliotis (2014), Section 4.5), and this allows one to
deduce Poincaré and log-Sobolev inequalities in the presence of appropriate isoperimetric in-
equalities (see, e.g., Milman (2012), Section 2.2). The RWM chain may indeed be viewed as a
discretization of this diffusion, but our results do not explicitly compare the diffusion with the
Markov chain; indeed our quantitative bounds are valid in any dimension and for any value
of σ 2. The additional close coupling condition required for RWM in fact introduces a penalty
in the convergence bounds, by which convergence degrades as the product δ · ε decreases. To
demonstrate close coupling for Metropolis chains, we show that for α0 := infz∈E α(z), with
α as in (2), ∥∥P(x, ·)− P(y, ·)∥∥TV ≤

∥∥Q(x, ·)−Q(y, ·)∥∥TV + 1− α0,

and we show that α0 can be lower bounded for any σ 2 under the assumption of L-smoothness.
One may then take δ such that |x− y| ≤ δ⇒‖Q(x, ·)−Q(y, ·)‖TV ≤ 1

2 ·α0 to obtain that P

is close coupling with ε ≥ 1
2 · α0. In our analysis, we find that to maximize the spectral gap

of P as a function of dimension, it is sufficient to scale σ 2 as d−1. Ultimately, one may view
the penalty for running an appropriately tuned RWM instead of Langevin as being of order
d−1 in terms of the spectral gap.

1.2. Roadmap. In Section 2, we review the notions of conductance profile and spectral
profile for Markov chains, and show how these can be used to establish bounds on the spectral
gap and mixing time of the chain.

In Section 3, we introduce notions of isoperimetric profiles of probability measures with
respect to a given metric. We show that when combined with the close coupling condition for
an invariant Markov kernel, one can deduce bounds on the conductance profile of the chain,
and hence on the spectral gap and mixing time. We then give a number of concrete examples
in which the isoperimetric profile can be well-controlled, and discuss the implications on
convergence. See Figure 1 for a diagram of these results. We also prove a general close-
coupling result for Metropolis algorithms.

In Sections 4–5, we apply these tools to study the RWM algorithm. Although one can ob-
tain nonasymptotic bounds for the spectral gap and mixing time under various isoperimetric
and smoothness assumptions using our techniques, we focus on obtaining concrete results
when U is m-strongly convex and L-smooth. In this case, we obtain nonasymptotic estimates
on both the spectral gap and the mixing time. Furthermore, we show that for this class of
densities the dependence of the spectral gap on dimension is sharp, up to sub-polynomial
factors. We also demonstrate that, when appropriately tuned, the asymptotic variance of a
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FIG. 1. Outline of the results of Sections 2, 3.

RWM chain is upper bounded by a linear factor d times the ideal variance, and that there is a
matching linear lower bound for linear functions.

In Section 6, we apply the same tools to the study of the pCN algorithm for sampling
perturbations of Gaussian measures. We again obtain nonasymptotic estimates on both the
spectral gap and mixing time of the chain.

1.3. Related work. This paper develops in a systematic manner a comparatively crude
analysis in a technical report by the authors (Andrieu et al. (2022), Sections 5.3–5.4).

One of the first attempts to establish directly the existence of a (right) L2-spectral gap
for RWM on R

d is Miclo and Roberto (2000), where a quantization approach is used to
approximate the initial problem, and results concerning Markov chains on graphs are lever-
aged. The authors focus on the scenario d = 1, although it is argued that the results could
be generalized to multiple dimensions. The assumptions made on the negative log-density U

are less stringent than those considered here, however no quantitative bounds were provided.
Another contribution in this direction is Jarner and Yuen (2004) where a lower bound on the
conductance was obtained for monotone log-concave distributions on R. The existence of an
L2 spectral gap can also be established using drift and minorization techniques: for example,
Jarner and Hansen (2000) demonstrate that the RWM chain is L1- geometrically ergodic un-
der fairly mild conditions on π , and since RWM chains are reversible those conditions also
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imply L2-geometric ergodicity and the existence of a spectral gap (Roberts and Rosenthal
(1997), Roberts and Tweedie (2001)). However, these techniques typically do not provide
accurate quantitative bounds on the size of the gap; see for instance, Qin and Hobert (2021).

The results and the approach we take here are inspired by several papers. The recent pa-
pers Belloni and Chernozhukov (2009), Dwivedi et al. (2019) and Chen et al. (2020) are
most closely related to our approach. All three of these papers also consider bounds on the
conductance or conductance profile of the RWM kernel P , but restricted to some compact
subset K of Rd . As a consequence, they do not provide a positive lower bound on the spec-
tral gap of the unrestricted P . More precisely, Belloni and Chernozhukov (2009) and Dwivedi
et al. (2019) prove a restricted variant of Corollary 16 for the conductance, corresponding to
connection 3–4 in Figure 1. Chen et al. (2020) prove restricted variants of connections 3–8.
Dwivedi et al. (2019) and Chen et al. (2020) obtain complexity bounds for convergence of
μP n to π on R

d using the notion of s-conductance, which entails delicate balancing of the
desired final error, the size of K , properties of μ and even σ 2. In particular, we emphasize
that all three prior complexity analyses involve using specific, theoretically-motivated and
typically unknown values of σ 2, so the results do not cover the arbitrary values of σ 2 used
in practice. The restriction to K in these papers is necessary since the authors only verify the
close coupling condition for P on K . In contrast, we are able to verify this condition globally,
and hence there is no need to consider restrictions. As a result, we can obtain a positive lower
bound on the spectral gap, and the convergence analysis does not require the same type of
fine balancing. In particular, we also find an improved dependence of the mixing time on the
condition number κ , in comparison to the dependence in Chen et al. (2020). We also mention
Mathé and Novak (2007), who proved that the Metropolis chain with a ball-walk proposal for
π log-concave with Lipschitz potential and restricted to a ball has a spectral gap in �(d−2);
see also Rudolf (2009).

Belloni and Chernozhukov (2009) and Dwivedi et al. (2019) use a type of 3-set exponential
isoperimetric profile inequality to infer a bound on the conductance of the chain restricted to
K , in the presence of the close coupling condition. The isoperimetric inequality is verified
for (perturbations of) m-strongly convex potentials. In Chen et al. (2020), a Gaussian 3-
set isoperimetric profile inequality is used to infer a bound on the conductance profile of
the restricted chain in the presence of the same coupling condition, and an isoperimetric
profile inequality is verified for strongly convex potentials. Our main contribution in relation
to this part of the theory is to show that any sufficiently regular isoperimetric profile implies
a corresponding 3-set isoperimetric inequality. In fact, Chen et al. (2020)’s consideration of
the Gaussian 3-set isoperimetric inequality and its implication for rapid convergence far from
equilibrium was the main inspiration for our results relating classical isoperimetric profiles
and conductance profiles more generally. Our subsequent mixing time results are mostly
direct consequences of the relationships between the conductance profile, spectral profile and
L2-convergence, as developed by Goel, Montenegro and Tetali (2006).

Hairer, Stuart and Vollmer (2014) show the existence and stability of the spectral gap of
pCN as d →∞ under quite general conditions, but the bounds so obtained are understood to
be somewhat loose numerically, and their dependence on the various parameters of the target
measure is implicit. Here, we make more restrictive assumptions on the target measure, which
allows us to obtain bounds which are more interpretable and perhaps sharper.

1.4. Notation. Notation is collected for convenience in Appendix A.

2. Conductance profile, spectral profile and mixing time bounds. The spectral gap
γP of a π -reversible Markov kernel P provides important information on the convergence of
the chain. Indeed, for any n ∈N0,

(5)
∥∥P nf

∥∥
2 ≤ ‖f ‖2 · (1− γP )n, f ∈ L2

0(π),
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and the factor (1− γP ) cannot be reduced in general, motivating quantitative lower bounds
on γP . By taking f = dμ/dπ − 1 in (5) we may deduce bounds on χ2(μP n,π), the chi-
squared divergence between μP n and π , and thereby upper bound mixing times. However,
using only this bound can give very conservative bounds when χ2(μ,π) is large, and so we
will use more refined techniques to control the convergence behaviour of the chain when it
is far from equilibrium. In particular, we make use of the spectral profile (Goel, Montenegro
and Tetali (2006)) and conductance profile of the Markov chain (Lovász and Kannan (1999),
Morris and Peres (2005)). These techniques are able to capture the following phenomenon:
many Markov chains, when far from equilibrium, are able to mix at faster than exponential
rates, or equally, that sets of small measure in the state space are comparatively easier to
escape from. Moreover, these techniques are capable of providing greatly-improved bounds
on mixing times, and in some cases, nearly-optimal bounds (see, e.g., Kozma (2007)).

DEFINITION 3 (Conductance and conductance profile). The conductance profile of a π -
invariant Markov kernel P is

�P (v) := inf
{
(π ⊗ P)(A×A�)

π(A)
:A ∈ E ,0 < π(A)≤ v

}
, v ∈

(
0,

1

2

]
.

The conductance of P is �∗P :=�P (1
2).

DEFINITION 4 (Spectral profile). Let P be a π -invariant Markov kernel, then we define

C+0 (A) := {g : E→R|suppg ⊆A,g ≥ 0, g �= const. π -a.s.}, A ∈ E ,

where suppg is the closure of {x ∈ E : |g(x)|> 0}, and

λP (A) := inf
g∈C+0 (A)

E(P, g)

Varπ(g)
, A ∈ E , π(A) > 0.

The spectral profile of P is

�P (v) := inf
{
λP (A) :A ∈ E ,0 < π(A)≤ v

}
, v > 0.

We note that for all v > 0 and π -reversible P , we have that �P (v)≥ GapR(P )≥ γP . To
proceed from here, we first use a Cheeger-type argument to bound the spectral profile using
the conductance profile. The statement and proof of Lemma 6 are very similar to Chen et al.
(2020), Lemma 12, with one difference being that we do not restrict the state space. The proof
can be found in Appendix B. We also recall Cheeger’s inequalities.

LEMMA 5 (Lawler and Sokal (1988), Theorem 3.5; Cheeger’s inequalities). If P is a
π -reversible Markov kernel, then

1

2
· [�∗P ]2 ≤GapR(P )≤ 2�∗P .

LEMMA 6. If P is a π -reversible Markov kernel, then

�P (v)≥
⎧⎪⎨
⎪⎩

1

2
·�P (v)2, 0 < v ≤ 1

2
,

1

2
· [�∗P ]2, v >

1

2
.

We will make use of the following lower bound on the Dirichlet form in terms of the
spectral profile.
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LEMMA 7 (Goel, Montenegro and Tetali (2006), Lemma 2.1). For g ∈ L2(π) nonnega-
tive and not constant π -a.s.,

E(P, g)≥Varπ(g) · 1

2
·�P

(
4 · [π(g)]2

Varπ(g)

)
.

Our final result in this section shows how the conductance profile can be used to deduce
bounds on convergence of P . We build on previous work, particularly Goel, Montenegro
and Tetali (2006) in the discrete setting and Chen et al. (2020) on general state spaces with
“restricted” conductance profiles.

THEOREM 8. Let P be a positive, π -reversible Markov kernel with �∗P > 0, μ� π a
probability measure, and εMix ∈ (0,8). To ensure χ2(μP n,π)≤ εMix, it suffices to take

n≥ 2+ 4 ·
∫ 1/2

min{4·u−1
0 ,1/2}

1

v ·�P (v)2 dv + [�∗P ]−2 · log
(

max
{

min{u0,8}
εMix

,1
})

,

where u0 = χ2(μ,π).

PROOF. Writing h= dμ
dπ

and un :=Varπ(P nh)= χ2(μP n,π), compute that

un − un+1 = E
(
P 2,P nh

)≥ E
(
P,P nh

)≥ un · 1

2
·�P

(
4 · u−1

n

)
,

where we have used the positivity of P to bound E(P 2, f )≥ E(P,f ), Lemma 7, and recalled
that π(P nh)= 1 for all n. Defining LP (η) := 1

2 · η ·�P (4 · η−1) for η > 0, it thus holds that
un − un+1 ≥ LP (un).

We now distinguish between whether u0 is greater or smaller than 8, noting that in the
latter case, using the spectral gap directly allows for tighter control of the increment un −
un+1. Supposing that u0 ≥ 8, we will first estimate how long it takes for un to drop below 8.
Recalling that �P is a decreasing function, it is straightforward to see that LP is an increasing
function, and hence measurable. Additionally, since �P is bounded below by γP > 0, it
follows that LP is bounded away from 0 on intervals not containing 0. Assuming that both
un, un+1 are at least 8, we can then write∫ un

un+1

dη

LP (η)
≥ un − un+1

LP (un)
≥ 1.

Moreover, if u0 ≥ u1 ≥ · · · ≥ un ≥ 8, then we may sum up these inequalities to see that∫ u0

8

dη

LP (η)
≥
∫ u0

un

dη

LP (η)
≥ n.

In particular, for n ≥ 1+ ∫ u0
8

dη
LP (η)

, it must hold that un < 8. Now, recall that for η ≥ 8, we
can bound

LP (η)= 1

2
· η ·�P

(
4 · η−1)≥ 1

2
· η ·
{

1

2
·�P

(
4 · η−1)2}= �P (4 · η−1)2

4 · η−1 .

We then compute that∫ u0

8

dη

LP (η)
≤
∫ u0

8

4 · η−1

�P (4 · η−1)2 dη= 4 ·
∫ 1/2

4·u−1
0

1

v ·�P (v)2 dv,

noting that �P is monotone, hence measurable and bounded below by �P (1
2) > 0, hence the

integral exists.
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For u0 < 8, we control the decay of un more tightly by using the spectral gap of P , γP .
We obtain

un − un+1 = E
(
P 2,P nh

)≥ (1− (1− γP )2) ·Varπ
(
P nh
)

=⇒ un+1 ≤ (1− γP )2 · un

and thus that

un ≤ (1− γP )2·n · u0 ≤ exp(−2 · γP · n) · u0.

One can then deduce that for n≥ 1+ 1
2 · γ−1

P · log(
u0

εMix
), un ≤ εMix. By Lemma 5, we recall

that γP ≥ 1
2 · [�∗P ]2. The result follows by assembling the various cases. �

We note a similarity between the consequences of the spectral profile and the so-called
“super-Poincaré” inequalities of Wang (2000). See Proposition 62 in Appendix B for some
details on this connection, which may be known among experts but does not appear to have
been explicitly documented. It is well known that stronger functional inequalities than the
Poincaré inequality allow improved dependence on dimension/initialization in Markov chain
mixing time results (see, e.g., Diaconis and Saloff-Coste (1998)) and one perspective on what
we pursue in the sequel is that one may combine bounds on the isoperimetric profile with the
close coupling condition to deduce bounds on the conductance profile and hence spectral pro-
file, which contains comparable information to functional inequalities like the super-Poincaré
inequality. Theorem 8 demonstrates how this functional inequality can provide sharper mix-
ing time bounds than those based on the spectral gap alone.

3. From isoperimetric profiles and close coupling to mixing time bounds.

3.1. General results. From this point onwards, the following assumption is in force. All
statements are made with respect to a given metric d on E, the dependence on which may be
suppressed when no ambiguity can result.

ASSUMPTION 9. The probability distribution π on E= R
d has a positive density w.r.t.

Lebesgue, given by π ∝ exp(−U), for some potential U :Rd →R.

DEFINITION 10 (Three-set isoperimetric inequality). A probability measure π satisfies
a three-set isoperimetric inequality with metric d and function F : (0, 1

2 ] → [0,∞) if for all
measurable partitions of the state space E= S1 � S2 � S3 with π(S1),π(S2) > 0,

(6) π(S3)≥ d(S1, S2) · F (min
{
π(S1),π(S2)

})
.

DEFINITION 11 (Isoperimetric profile). For A ∈ E and r ≥ 0, let Ar := {x ∈ E :
d(x,A) < r}, and define the Minkowski content of A under π with respect to d by

π+(A)= lim inf
r→0+

π(Ar)− π(A)

r
.

The isoperimetric profile of π with respect to the metric d is

(7) Iπ (p) := inf
{
π+(A) :A ∈ E , π(A)= p

}
, p ∈ (0,1).

We note briefly that the isoperimetric profile can be controlled explicitly in many cases of
interest; examples to this effect are provided in Section 3.2. The following is a special case
of a nontrivial result for distributions defined on Riemannian manifolds which is the product
of extensive research by several authors, and holds specifically for d being the natural metric
induced by the given Riemannian structure; we recall it here to emphasize that the notion of
regularity on the isoperimetric profile that we assume is reasonable.
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LEMMA 12 (Milman (2009a), Theorem 1.8). If U is convex and twice-continuously dif-
ferentiable, then Iπ is symmetric about 1

2 and concave.

DEFINITION 13. We say that Ĩπ : (0,1)→ (0,∞) is an isoperimetric minorant of π if
Ĩπ ≤ Iπ pointwise. We furthermore say that Ĩπ is regular if it is symmetric about 1

2 , continu-
ous, and monotone increasing on (0, 1

2 ].

To begin with, we show that the existence of a regular isoperimetric minorant is equivalent
to the existence of a corresponding three-set isoperimetric inequality.

LEMMA 14. π has a regular isoperimetric minorant Ĩπ w.r.t. the metric d ⇐⇒ π

satisfies a three-set isoperimetric inequality with metric d and function F = Ĩπ on (0, 1
2 ].

PROOF. (⇐) Following Bobkov and Houdré (1997a), Section 2, we may consider only
closed sets A in (7). For arbitrary closed A ∈ E with π(A) ∈ (0,1), for r > 0 let Ar be as
defined in Definition 11. We may take S1 =A, S3 = Ar \A= {x ∈ E \A : d(x,A) < r} and
S2 = E \Ar . From Definition 10,

π(Ar)− π(A)≥ rF
(
min
{
π(A),π(E \Ar)

})
,

from which we obtain

π+(A)= lim inf
r→0+

π(Ar)− π(A)

r
≥ F
(
min
{
π(A),π

(
A�)}),

since for closed A, limr→0+ π(E \ Ar) = 1 − limr→0+ π(Ar) = π(A�). Hence, Ĩπ (t) =
F(min{t,1 − t}) is an isoperimetric minorant, symmetric on (0,1), continuous and mono-
tone increasing on (0, 1

2 ] and hence regular.
(⇒) Following Bobkov and Houdré (1997a), Theorem 4.1 and Remark 4.2, for any Lips-

chitz f : E→[0,1] one may write

π
(|∇f |)≥ ∫ 1

0
π+(f > t)dt ≥

∫ 1

0
Iπ

(
π(f > t)

)
dt ≥
∫ 1

0
Ĩπ

(
π(f > t)

)
dt,

where we have written (f > t) for the set {x ∈ E : f (x) > t}, and

∣∣∇f (x)
∣∣ := lim sup

d(x,y)→0+

|f (x)− f (y)|
d(x, y)

∈ [0,∞],

is the modulus of the gradient of f . Now let E = S1 � S2 � S3 with π(S1),π(S2) > 0. If
d(S1, S2)= 0 then (6) holds trivially, so henceforth we assume d(S1, S2) > 0. Following the
construction in the proof of Ledoux (2001), Proposition 1.7, we define f : E → [0,1] by
f (x) := min{1, d(S1,x)

d(S1,S2)
}. This function is d(S1, S2)

−1-Lipschitz on S3 and flat elsewhere. It
thus holds for this f that

π
(|∇f |)≤ π(S3) · d(S1, S2)

−1 =⇒ π(S3)≥ d(S1, S2) · π(|∇f |).
We now seek a lower bound on π(|∇f |), for which we will make use of the isoperimetric
profile. Observe that for t ∈ [0,1), it holds that{

x ∈ E : f (x) > t
}= {x ∈ S2 : f (x) > t

} � {x ∈ S3 : f (x) > t
}

= S2 � {x ∈ S3 : f (x) > t
}
,

and hence that π(f > t) ∈ [π(S2),π(S2 � S3)] = [π(S2),π(S�
1)].
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Suppose now that max{π(S1),π(S2)} ≥ 1
2 , and without loss of generality that π(S1) ≥

1
2 ≥ π(S2). It then follows for t ∈ (0,1) that π(f > t) ∈ [π(S2),π(S�

1)] ⊆ [0, 1
2 ]. By

monotonicity of Ĩπ on (0, 1
2 ], it then holds that Ĩπ (π(f > t)) ≥ Ĩπ (π(S2)) and thus that

π(|∇f |)≥ Ĩπ (π(S2)), from which it follows that

π(S3)≥ d(S1, S2) · Ĩπ

(
π(S2)

)= d(S1, S2) · Ĩπ

(
min
{
π(S1),π(S2)

})
.

On the contrary, suppose that max{π(S1),π(S2)}< 1
2 . It then holds that any median ν of f

under π lies in (0,1), so one can write that

t ∈ [0, ν] =⇒ π(f > t)≥ 1

2
, t ∈ (ν,1] =⇒ π(f > t)≤ 1

2
.

Letting ν be such a median, observe that t �→ Ĩπ (π(f > t)) is increasing on [0, ν] and de-
creasing on [ν,1]. In particular,

Ĩπ

(
π(f > t)

)≥ Ĩπ

(
π(f > 0)

)= Ĩπ

(
π
(
S�

1
))

, t ∈ [0, ν],
making use of the fact that π � Leb. Similarly,

Ĩπ

(
π(f > t)

)≥ Ĩπ

(
π(f > u)

)
, ν < t ≤ u≤ 1,

and therefore

Ĩπ

(
π(f > t)

)≥ lim
u→1−

Ĩπ

(
π(f > u)

)= Ĩπ

(
lim

u→1−
π(f > u)

)
≥ Ĩπ

(
π(S2)

)
,

taking limits in u and applying continuity of Ĩπ .
We thus decompose∫ 1

0
Ĩπ

(
π(f > t)

)
dt =
∫ ν

0
Ĩπ

(
π(f > t)

)
dt +
∫ 1

ν
Ĩπ

(
π(f > t)

)
dt

≥
∫ ν

0
Ĩπ

(
π
(
S�

1
))

dt +
∫ 1

ν
Ĩπ

((
π(S2)

))
dt

= ν · Ĩπ

(
π
(
S�

1
))+ (1− ν) · Ĩπ

(
π(S2)

)
≥min

{
Ĩπ

(
π
(
S�

1
))

, Ĩπ

(
π(S2)

)}
=min

{
Ĩπ

(
π(S1)

)
, Ĩπ

(
π(S2)

)}
,

from which we may conclude. �

We now show that given a three-set isoperimetric inequality with a monotone increasing
F , together with the close coupling assumption on the Markov kernel, one may deduce a
lower bound on the conductance of any set for that Markov kernel. The proof, housed in
Appendix B, follows closely that of Dwivedi et al. (2019), Lemma 6, which itself is based on
several earlier works.

LEMMA 15. Suppose that π satisfies a three-set isoperimetric inequality with metric
d and function F monotone increasing on (0, 1

2 ]. Let P be a (d, δ, ε)-close coupling, π -
invariant Markov kernel. Then for any A ∈ E with 0 < π(A)≤ 1

2 ,

(π ⊗ P)(A×A�)

π(A)
≥ sup

θ∈(0,1)

min
{

1

2
· (1− θ) · ε, 1

4
· ε · δ · θ · (F/id)

(
θ · π(A)

)}
,

where F/id is the function x �→ F(x)/x.
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Since Ĩπ /id is decreasing for a concave, regular isoperimetric minorant Ĩπ , we obtain the
following bounds on the conductance profile by combining Lemma 14, Lemma 15 and Def-
inition 3. We emphasize that concavity of Ĩπ is crucial for obtaining nonzero lower bounds.
Considering functions on (0, 1

2 ] of the form p �→ c ·pk the critical case is k = 1 and any k > 1
implies only a conductance profile lower bound of 0; our examples give isoperimetric mino-
rants of the form p �→ c · p · log( 1

p
)r on (0, 1

2 ] for r ∈ [0,1]. Additionally, it is well known

that the uniform measure on the sphere S
d ⊂ R

d+1 satisfies I (p) � p
d−1
d ; see for example,

Section 9 of Bobkov and Houdré (1997a).

COROLLARY 16. Suppose that Ĩπ is a regular, concave isoperimetric minorant of π

w.r.t. the metric d. Let P be a (d, δ, ε)-close coupling, π -invariant Markov kernel. Then for
any v ∈ (0, 1

2 ],

�P (v)≥ sup
θ∈[0,1]

min
{

1

2
· (1− θ) · ε, 1

4
· ε · δ · θ · (Ĩπ/id)(θ · v)

}

≥ 1

4
· ε ·min

{
1,

1

2
· δ · Ĩπ (1

2 · v)

1
2 · v

}
.

REMARK 17. For obtaining tighter bounds on the conductance when δ · Ĩπ (1
2) is suffi-

ciently small, one can take θ = 1− δ · Ĩπ (1
2) to see that

�∗P ≥
1

2
· ε · δ · Ĩπ

(
1

2
·
(

1− δ · Ĩπ

(
1

2

)))
→ 1

2
· ε · δ · Ĩπ

(
1

2

)
,

as δ · Ĩπ (1
2) → 0+, which is a slight improvement on the nonasymptotic bound �∗P =

�P (1
2)≥ 1

2 · ε · δ · Ĩπ (1
4).

The following theorem is the culmination of this and the preceding section; see Figure 1.
The proof is in Appendix B. For the mixing time bound, v−1∗ will typically increase quite
rapidly as δ decreases. The bounds suggest three-stage behaviour when v∗ < 1

2 , recalling that
u0 = χ2(μ,π). The first term is active when u0 > 4 · v−1∗ > 8, either because u0 is extremely
large or δ is large, while the second term is active when u0 > 8 and the third term is active
when u0 > εMix. Of course, if u0 ≤ εMix, then one may take n= 0.

THEOREM 18. Let π have a regular, concave isoperimetric minorant Ĩπ w.r.t. the metric
d, and P be a (d, δ, ε)-close coupling, π -reversible, positive Markov kernel. Then

1. For v ∈ (0, 1
2 ], �P (v)≥ 1

4 · ε ·min{1, 1
2 · δ · (Ĩπ/id)(1

2 · v)},
2. �∗P ≥ 1

4 · ε ·min{1,2 · δ · Ĩπ (1
4)},

3. γP ≥ 1
2 · [�∗P ]2 ≥ 2−5 · ε2 ·min{1,4 · δ2 · Ĩπ (1

4)2}.
Furthermore, let εMix ∈ (0,8), μ � π be a probability measure and u0 := χ2(μ,π). To
ensure that χ2(μP n,π)≤ εMix, it suffices to take

n≥ 2+ 26 · ε−2 ·max
{

log
(

u0

4 · v−1∗

)
,0
}

+ 28 · ε−2 · δ−2 ·
∫ 1/4

max{min{2·u−1
0 ,1/4},v∗/2}

ξ

Ĩπ (ξ)2
dξ

+ 24 ·max
{

1,2−2 · δ−2 · Ĩπ

(
1

4

)−2}
· ε−2 · log

(
max
{

min{u0,8}
εMix

,1
})

,
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where

(8) v∗ :=min
{

1

2
,max
{

0, sup
{
v > 0 : 1≤ 1

2
· δ · Ĩπ (1

2 · v)

1
2 · v

}}}
.

We conclude our general results with a result that can be used to establish the close-
coupling condition for Metropolis kernels, which we will use in the sequel to analyze both
the RWM and pCN Markov chains.

LEMMA 19. Let Q be a ν-reversible Markov kernel where ν� π is a σ -finite measure,
P be the π -reversible Metropolis kernel with proposal Q and α0 := infx∈E α(x). Then

∥∥P(x, ·)− P(y, ·)∥∥TV ≤
∥∥Q(x, ·)−Q(y, ·)∥∥TV + 1− α0, x, y ∈ E.

PROOF. Let x, y ∈ E be arbitrary. We write � = dπ
dν

. We construct a specific coupling of
(X′, Y ′) such that X′ ∼ P(x, ·) and Y ′ ∼ P(y, ·). Without loss of generality, we may assume
that �(x)≥�(y). Let (Wx,Wy) be drawn from a maximal coupling of Q(x, ·) and Q(y, ·),
so that

P(Wx =Wy)= 1− ∥∥Q(x, ·)−Q(y, ·)∥∥TV.

With U ∼Unif(0,1), we complete the specification of the distribution of (X′, Y ′) via

X′|{Wx =wx,Wy =wy,U = u} =
{
wx, u≤�(wx)/�(x),

x, u > �(wx)/�(x),

and

Y ′|{Wx =wx,Wy =wy,U = u} =
{
wy, u≤�(wy)/�(y),

y, u > �(wy)/�(y).

On the event {Wx =Wy} ∩ {X′ =Wx}, we have X′ = Y ′ =Wx since �(x)≥�(y). Hence,

P
(
X′ = Y ′

)≥ P
(
Wx =Wy,X

′ =Wx

)
≥ P(Wx =Wy)+ P

(
X′ =Wx

)− 1

= (1− ∥∥Q(x, ·)−Q(y, ·)∥∥TV

)+ P
(
X′ =Wx

)− 1

≥ (1− ∥∥Q(x, ·)−Q(y, ·)∥∥TV

)+ α0 − 1

= α0 −
∥∥Q(x, ·)−Q(y, ·)∥∥TV.

We conclude by the coupling inequality: ‖P(x, ·)− P(y, ·)‖TV ≤ P(X′ �= Y ′). �

3.2. Examples of isoperimetric profiles. In this section, we provide some concrete ex-
amples of probability measures for which the isoperimetric profile admits regular, concave
and tractable isoperimetric profiles or minorants. We first describe explicitly the profiles as-
sociated to specific measures, and then describe some general results which hold over well-
behaved families of measures. Most results in this subsection are not originally ours, and are
included in order to provide context on the breadth of applicability of our main results.
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3.2.1. Specific examples.

EXAMPLE 20. Let ϕγ , �γ denote the PDF and CDF respectively of the one-dimensional
standard Gaussian measure. For any d ∈ N, the isoperimetric profile of π =N (0, Id) w.r.t.
| · | satisfies Iπ (p)= (ϕγ ◦�−1

γ )(p) (Borell (1975), Sudakov and Tsirel’son (1978)), which
satisfies

lim
p→0+

Iπ (p)

p · (log 1
p
)1/2

=√2,

see, for example, Barthe and Maurey (2000). Observing that Iπ is concave and regular, one
can deduce

Iπ(p)≥ 2 · Iπ

(
1

2

)
·min{p,1− p} =

(
2

π

)1/2
·min{p,1− p}.

EXAMPLE 21. For the Laplace measure π(dx) ∝ exp(−|x|)dx in one dimension, the
isoperimetric profile w.r.t. | · | is given by Iπ(p)=min{p,1− p} (see, e.g., Bobkov (1999)).

EXAMPLE 22. For the Subbotin measure π(dx)∝ exp(−|x|α)dx in one dimension, with
α ∈ (1,2), it holds that the isoperimetric profile w.r.t. | · | can be bounded from below for
p ∈ (0, 1

2 ] as Iπ(p)≥K(α) · p · (log 1
p
)1−1/α for some K(α) > 0 (see, e.g., Barthe, Cattiaux

and Roberto (2006), Latała and Oleszkiewicz (2000)).

3.2.2. Functional inequalities. Many analyses of MCMC algorithms restrict to consid-
ering strongly log-concave targets π , that is, U is strongly convex, to obtain quantitative
bounds. This means that for potentials with inhomogeneous local convexity properties, but
good global isoperimetric properties (e.g., strongly convex in the tails, weakly convex in the
center of the space), complexity bounds can be somewhat pessimistic. In this subsection, we
give some examples of how to estimate isoperimetric profiles when π is only log-concave,
given additional quantitative information about functional inequalities which they satisfy.

EXAMPLE 23. For any log-concave π , there exists γπ > 0 such that

∀f locally Lipschitz, π
(|∇f |2)≥ γπ ·Varπ(f ),

that is, π satisfies a Poincaré inequality (see, e.g., Bakry, Gentil and Ledoux (2014), The-
orem 4.6.3). It is also known that Poincaré inequalities can be translated into L1-Poincaré
inequalities, with explicit control of the constants (Cattiaux and Guillin (2020)). Finally, L1-
Poincaré inequalities are equivalent to isoperimetric inequalities with respect to | · | of the
form Iπ(p)≥ c ·min{p,1−p}, with the same constant (see, e.g., Kolesnikov (2007)). Com-
bining these facts, if π is log-concave, one can deduce that

Iπ(p)≥ 1

6
· γ 1/2

π ·min{p,1− p}.

EXAMPLE 24. Consider log-concave π satisfying a logarithmic Sobolev inequality with
constant λπ , namely,

∀f locally Lipschitz, π
(|∇f |2)≥ λπ · Entπ

(
f 2),

where for positive f , Entπ(f ) := π(f · logf )− π(f ) · logπ(f ). A result of Ledoux (2011)
then gives the following bound for the isoperimetric profile w.r.t. | · |,

Iπ (p)≥ 1

34
· λ1/2

π · p ·
(

log
1

p

)1/2
, p ∈

(
0,

1

2

]
.
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EXAMPLE 25. For log-concave π satisfying a q-log-Sobolev inequality (see Bobkov
and Zegarlinski (2005)), that is,

∀f locally Lipschitz, D · Entπ
(|f |q)≤ π

(|∇f |qq
)
,

a result of Milman (2009b) establishes that for the isoperimetric profile w.r.t. | · |,
Iπ (p)≥ cq ·D · p ·

(
log

1

p

)1/q

for p ∈ (0,1/2],
where cq > 0 is universal. For q = 2, this entails the standard log-Sobolev inequality; for
q ∈ [1,2), the assumption becomes stronger and corresponds to potentials which have tail
behaviour like U(x)∼ |x|q∗ , where q−1+q−1∗ = 1. For q = 1, the assumption is yet stronger
and corresponds intuitively to potentials which have tail behaviour like U(x) ∼ exp(c · |x|)
for some c > 0.

3.2.3. Transfer principles. Another practical aspect of working with isoperimetric pro-
files is that they are often preserved under suitably regular perturbations, some of which we
detail here. These transfer principles can be used to accommodate potentials that are not
convex. The first of these concerns the transfer of isoperimetric properties under Lipschitz
transport; related statements are made in Barthe (2001).

LEMMA 26. For i = 1,2, let μi be a probability measure on the metric space (Ei ,di).
Suppose that these measures are related through transport as

μ2 = T#μ1,

where T : E1 → E2 is a Lipschitz bijection. Then, for Ĩ any isoperimetric minorant of μ1
w.r.t. d1, it holds that |T |−1

Lip · Ĩ is an isoperimetric minorant of μ2 w.r.t. the metric d2. In
particular, if T is also an isometry, then μ1 and μ2 have identical isoperimetric profiles w.r.t.
their respective metrics.

PROOF. Let A ⊆ E2 be measurable and Ar = {x ∈ E2 : d2(x,A) ≤ r}. Write B :=
T −1(A), and compute that

Ar = {x ∈ E2 : d2(x,A)≤ r
}

= {x ∈ E2 : d2
(
T
(
T −1(x)

)
, T (B)

)≤ r
}

⊇ {T (y) ∈ E2 : d1(y,B)≤ |T |−1
Lip · r
}

= T (B|T |−1
Lip·r ),

where Bs := {y ∈ E1 : d1(y,B)≤ s}. Then

μ2(Ar)−μ2(A)

r
≥

μ2(T (B|T |−1
Lip·r ))−μ2(T (B))

r
=

μ1(B|T |−1
Lip·r )−μ1(B)

r
,

whence it follows that

μ+2,d2
(A)= lim inf

r→0+
μ2(Ar)−μ2(A)

r

≥ lim inf
r→0+

μ1(B|T |−1
Lip·r )−μ1(B)

r

≥ lim inf
s→0+

μ1(Bs)−μ1(B)

|T |Lip · s
= |T |−1

Lip ·μ+1,d1
(B).
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By definition of isoperimetric minorants and μ2, it holds that μ+1,d1
(B) ≥ Ĩ (μ1(B)) =

Ĩ (μ2(A)), so the first result follows. For the second result, note that bijective isometries from
E1 to E2 satisfy |T |Lip = |T −1|Lip = 1 (noting that these Lipschitz norms are technically
defined on different spaces), and that the isoperimetric profile is always an isoperimetric mi-
norant. Applying the first result in both directions allows us to conclude. �

The following result will be used frequently in the sequel.

LEMMA 27. For an m-strongly convex potential U , with d= | · |, we have

Iπ(p)≥m1/2 · (ϕγ ◦�−1
γ

)
(p)≥C� ·m1/2 ·min{p,1− p} ·

(
log

1

min{p,1− p}
)1/2

,

where C� := ( 2
π ·log(2)

)1/2 ≥ 0.958357. Moreover, if we let Ĩπ (p) := m1/2 · (ϕγ ◦ �−1
γ )(p),

which is regular and concave, then

Ĩπ

(
1

4

)
=m1/2 ·Cγ ,

where Cγ := (ϕ ◦�−1)(1
4)≥ 0.3177765.

PROOF. By the contraction principle of Caffarelli (2000), it is known that if one takes
μ=N (0,m−1 · Id), then there exists a 1-Lipschitz mapping T which pushes μ onto π , and
hence a m−1/2-Lipschitz mapping which pushes N (0, Id) onto π . By Lemma 26, the first
inequality follows. For the second inequality, observe that the function

g(p)= (ϕγ ◦�−1
γ )(p)

p · (log( 1
p
))1/2

,

is minimized on (0, 1
2 ] at 1

2 ; see Figure 2, and defining C� = g(1
2) gives the second inequality.

The final claim is a direct computation. �

Isoperimetric profiles also transfer under bounded changes of measure in the style of, for
example, Holley and Stroock (1987). We provide the following result that demonstrates this.

PROPOSITION 28. Let μ be a probability measure on R
d with positive density with re-

spect to Lebesgue. Suppose Ĩμ is a regular isoperimetric minorant of μ w.r.t. a metric d, and
ν is a probability measure equivalent to μ with dν

dμ
∈ [c1, c2] for some 0 < c1 ≤ c2 <∞. Then

p �→ c1 · Iμ(c−1
2 ·min{p,1−p}) for p ∈ (0,1) is a regular isoperimetric minorant of ν w.r.t.

d.

PROOF. We first deduce that μ satisfies a 3-set isoperimetric inequality with function
Fμ(t)= Ĩμ(t) for t ∈ (0, 1

2 ] by Lemma 14. Then, for any measurable partition E= S1 � S2 �
S3 we have

ν(S3)≥ c1μ(S3)

≥ c1d(S1, S2)Fμ

(
min
{
μ(S1),μ(S2)

})
≥ c1d(S1, S2)Fμ

(
c−1

2 min
{
ν(S1), ν(S2)

})
,

so ν satisfies a 3-set isoperimetric inequality with metric d and function Fν(t)= c1Fμ(c−1
2 t).

We conclude by Lemma 14. �
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FIG. 2. A plot of p �→ (ϕγ ◦�−1
γ )(p)

p·[log( 1
p

)]1/2 .

REMARK 29. Proposition 28 provides an improvement of Belloni and Chernozhukov
(2009), Lemma 2, who (essentially) work in the setting of probability measures whose density
can be expressed as

π(x)= exp
(
−1

2
|x|2 − V (x)− ξ(x)

)
,

where V is convex, and ξ is uniformly bounded above and below. They deduce a “pseudo”-
three-set isoperimetric inequality of the form

π(S3)≥ c · exp
(−Osc(ξ)

) · t · exp
(
−1

2
· t2
)
·min
{
π(S1),π(S2)

}
,

where Osc(ξ) := ess sup ξ − ess inf ξ , t = d(S1, S2), d= | · |, and c > 0 is an explicit constant.
In fact, using Caffarelli’s result, one can see that exp(−1

2 |x|2 − V (x))dx will admit ϕγ ◦
�−1

γ as an isoperimetric minorant, and so combining this with Proposition 28, one obtains
that π satisfies the inequality

π(S3)≥ exp
(−Osc(ξ)

) · d(S1, S2) · (ϕγ ◦�−1
γ

)(
min
{
π(S1),π(S2)

})
,

which relates to a result of Bobkov (2010) (which is stronger, but only valid in dimension
1). Combining this observation with the spectral profile approach and the other calculations
of Belloni and Chernozhukov (2009), it seems likely that one could improve the dimension-
dependence of their results. We do not pursue this claim further in this work.

EXAMPLE 30. It is known that under suitable convexity assumptions that isoperi-
metric profiles “almost” tensorize, that is, that the isoperimetric profile of π⊗n satisfies
infn≥1 Iπ⊗n ≥ c · Iπ for some constant c > 0. In particular, the isoperimetric profile of product
measures can be lower-bounded independently of dimension. We refer the reader to Bobkov
and Houdré (1997b), Roberto (2010) for details.

3.3. From spectral profile to mixing times: Examples. In this section, we describe how to
combine an isoperimetric profile for π with the close coupling condition assumption on P to
estimate mixing times for the chain. Write u0 = χ2(μ,π) for the initial χ2-divergence.
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In all of our examples, our isoperimetric minorants take the form Ĩπ (p)= c · p · log( 1
p
)r

for p ∈ (0, 1
2 ], with r ∈ [0,1]. We briefly recap how the r parameter maps onto simple as-

sumptions, before providing explicit calculations:

• r = 0 is “exponential-type” isoperimetry, which holds for any log-concave measure and
corresponds roughly to potentials which have a tail growth of order or faster than |x|.

• r = 1
2 is “Gaussian-type” isoperimetry, which holds for any log-concave measure with

sub-Gaussian tails.
• r ∈ (0, 1

2) corresponds to “intermediate” isoperimetry, and roughly corresponds to poten-

tials which have tail growth U(x)∼ |x| 1
1−r ∈ (|x|1, |x|2).

• r ∈ (1
2 ,1] corresponds to “light-tailed” isoperimetry, and roughly corresponds to potentials

which have tail growth U(x)∼ |x| 1
1−r � |x|2, with appropriate modifications for the case

r = 1 as in Example 25.

Now, to compute: recall by Theorem 18 that in order to ensure that χ2(μP n,π)≤ εMix ≤ 8,
it suffices to take

n≥ 2+ 26 · ε−2 ·max
{

log
(

u0

4 · v−1∗

)
,0
}

+ 28 · ε−2 · δ−2 ·
∫ 1/4

max{min{2·u−1
0 ,1/4},v∗/2}

ξ

Ĩπ (ξ)2
dξ.

+ 24 ·max
{

1,2−2 · δ−2 · Ĩπ

(
1

4

)−2}
· ε−2 · log

(
max
{

min{u0,8}
εMix

,1
})

.

Assuming for now that u0 ≥ 8 is intermediate, and v∗ ≤ 4 · u−1
0 is small, with v∗ given in (8),

we focus on the value of the middle integral,∫ 1/4

2·u−1
0

ξ

Ĩπ (ξ)2
dξ = c−2 ·

∫ 1/4

2·u−1
0

1

ξ · log( 1
ξ
)2r

dξ = c−2 ·
∫ log(u0/2)

log(4)

du

u2r
.

There is now a trichotomy of behaviours based upon the relative positions of r and 1
2 (recall-

ing that in practice, the parameter ε is typically of constant order):

• If r ∈ (1
2 ,1], then the inner integral evaluates to 1

2r−1 ·(log(4)−(2r−1)− log(u0/2)−(2r−1)) ∈
O(1). The total mixing time then scales roughly like

max
{

log
(

u0

4 · v−1∗

)
,0
}
+ δ−2 ·

{
1u0>8 + log

1

εMix

}
.

• If r = 1
2 , then the inner integral evaluates to log(

log(u0/2)
log(4)

) ∈O(log logu0). The total mixing
time then scales roughly like

max
{

log
(

u0

4 · v−1∗

)
,0
}
+ δ−2 ·

{
log min

{
logu0, v

−1∗
} · 1u0>8 + log

1

εMix

}
.

• If r ∈ [0, 1
2), then the inner integral evaluates to 1

1−2r
· (log(u0/2)1−2r − log(4)1−2r ) ∈

O(log(u0)
1−2r ). The total mixing time then scales roughly like

max
{

log
(

u0

4 · v−1∗

)
,0
}
+ δ−2 ·

{(
min
{
logu0, v

−1∗
})1−2r · 1u0>8 + log

1

εMix

}
.

In particular, when r = 0, one obtains the same O(log(u0)) dependence implied by a stan-
dard spectral gap approach, that is, the spectral profile provides no strict benefit. Indeed for
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δ sufficiently small one checks that v∗ = 0, and so the first term vanishes entirely. More-
over, the second and third terms are qualitatively identical, and thus there is no “three-
phase” behaviour, but instead only one phase.

Recalling that v−1∗ grows rapidly as δ decreases we see that the effect of δ−2 is amplified for
large u0 or v−1∗ for r ≤ 1/2, roughly corresponding to distributions with tails heavier than
Gaussians, and that this is not the case for lighter tailed distributions that is, r > 1/2.

4. Spectral gap of RWM in high dimensions. In Sections 4–5, we denote by P the
RWM kernel defined by (1) with Q the Gaussian proposal kernel defined for a fixed but
arbitrary σ > 0 by

Q(x,A)=
∫

1A(x + σ · z)N (dz;0, Id), x ∈ E,A ∈ E .

In Appendix C we discuss how our analysis can be generalized to other proposal kernels
with independent noise increments for each of the d components. Since Q is reversible w.r.t.
the Lebesgue measure on R

d , we have � = π ∝ exp(−U), following Assumption 9. It is
standard to deduce by Baxendale (2005), Lemma 3.1, that P is a positive Markov kernel for
this particular Q. We note the following useful expression

(9) α(x)=
∫

N (dz;0, Id) ·min
{
1, exp

(−(U(x + σ · z)−U(x)
))}

,

and we also denote α0 = infx∈E α(x).
For the purposes of obtaining explicit bounds and matching negative results with di-

mension, we impose the following further assumption about π , noting that Assumption 9
is already in force. As will be discussed in Section 4.4, both m-strong convexity and L-
smoothness can be weakened to obtain explicit bounds on the spectral gap.

ASSUMPTION 31. For some 0 < m≤ L, U is m-strongly convex and L-smooth:

m

2
· |h|2 ≤U(x + h)−U(x)− 〈∇U(x),h

〉≤ L

2
· |h|2, x, h ∈ E.

We write κ := L/m for the condition number of the target measure.

EXAMPLE 32. Let π =N (0, σ 2
0 · Id), so that U(x)= 1

2·σ 2
0
· |x|2. Then

U(x + h)−U(x)− 〈∇U(x),h
〉= 1

2 · σ 2
0

· |h|2, x, h ∈ E,

so U is m-strongly convex and L-smooth with L=m= 1/σ 2
0 and κ = 1.

Another natural class of examples with strongly convex and smooth potentials comes from
considering Bayesian posterior measures for which the prior is normal, and the log-likelihood
is concave with bounded Hessian.

EXAMPLE 33. Consider the task of Bayesian logistic regression, taking as prior π0 =
N (0, σ 2

0 · Id), and observing covariate-response pairs {(ai, yi)}Ni=1 ⊂R
d ×{0,1}. The poten-

tial corresponding to the posterior measure is then given up to an additive constant by

U(x)= 1

2 · σ 2
0

· |x|2 +
N∑

i=1

{
log
(
1+ exp

(−〈ai, x〉))− yi · 〈ai, x〉}.
Writing A for the N × d matrix with rows given by the {ai}, one can check that U is m-
strongly convex and L-smooth with m ≥ 1

σ 2
0

and L ≤ 1
σ 2

0
+ 1

4 · λMax(AA ), λMax denoting

the largest eigenvalue of a symmetric matrix. This gives κ ≤ 1+ 1
4 · σ 2

0 · λMax(AA ).
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4.1. Lower bound on the conductance and spectral gap. The following is a general re-
sult, depending only on macroscopic properties of the target measure: if the measure has good
isoperimetry, and the acceptance rate is lower bounded, then the chain will equilibrate at a
rate commensurate with these properties (roughly in accordance with the convergence of the
overdamped Langevin diffusion with the same target measure), attenuated only by the choice
of σ .

THEOREM 34. Let π admit a regular, concave isoperimetric minorant Ĩπ w.r.t. | · |. Then

�∗P ≥ 2−3 · α0 ·min
{

1,2 · α0 · σ · Ĩπ

(
1

4

)}
,

and

γP ≥ 2−7 · α2
0 ·min

{
1,4 · α2

0 · σ 2 · Ĩπ

(
1

4

)2}
.

PROOF. By Lemma 38, P is (| · |, α0 · σ, 1
2 · α0)-close-coupling, and we conclude from

Theorem 18. �

COROLLARY 35. Under Assumption 31, let σ = ς ·L−1/2 ·d−1/2 for any ς > 0, and Cγ

as in Lemma 27. Then

�∗P ≥ 2−4 ·Cγ · ς · exp
(−ς2) · d−1/2 ·

(
m

L

)1/2
,

and

γP ≥ 2−9 ·C2
γ · ς2 · exp

(−2 · ς2) · d−1 · m
L

.

PROOF. By Corollary 40, α0 ≥ 1
2 · exp(−1

2 · ς2) and we can take Ĩπ (1
4) ≥m1/2 · Cγ by

Lemma 27. Since

Cγ · exp
(
−1

2
· ς2
)
· ς ·L−1/2 · d−1/2 ·m1/2 ≤ Cγ · e−1/2 · 1 < 1,

for any d ∈N and ς > 0 (noting that m≤ L), we deduce that

�∗P ≥ 2−3 · α0 ·min
{

1,2 · α0 · σ · Ĩπ

(
1

4

)}

≥ 2−4 · exp
(
−1

2
· ς2
)
·min
{

1, exp
(
−1

2
· ς2
)
· ς ·L−1/2 · d−1/2 ·m1/2 ·Cγ

}

= 2−4 ·Cγ · ς · exp
(−ς2) · d−1/2 ·

(
m

L

)1/2
,

and the lower bound on γP follows similarly. �

REMARK 36. We find that �∗P ∈ �(d−1/2), and γP ∈ �(d−1). Fixing ς , we obtain
(nonasymptotically) that

�∗P · d1/2 ≥ 2−4 ·Cγ · ς · exp
(−ς2) · (m

L

)1/2

≥ 0.019861 · ς · exp
(−ς2) · (m

L

)1/2
.
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This lower bound is maximized in ς by taking ς2 = 1
2 , which yields

�∗P · d1/2 ≥ 0.008518 ·
(

m

L

)1/2
.

This particular bound-maximizing value of ς is likely an artifact of the proof technique; opti-
mal scaling results of Roberts and Rosenthal (2001) suggest that ς ≈ 2.38 is optimal in high
dimensions when π =N (0, Id), although they do not provide a bound on the conductance or
spectral gap of the associated Markov kernel. Similarly, taking ς2 = 1

2 leads to the following
bound for the spectral gap:

γP · d ≥ 3.62784× 10−5 · m
L

.

The following lemma gives a useful bound on the total variation distance between the
proposals; the proof can be found in Appendix B.

LEMMA 37. If v > 0 and x, y ∈ E satisfy |x − y| ≤ v · σ ,

∥∥Q(x, ·)−Q(y, ·)∥∥TV ≤
1

2
· v.

The following is a key lemma establishing the close coupling condition for P .

LEMMA 38. P is (| · |, α0 · σ, 1
2 · α0)-close-coupling.

PROOF. Assume x, y ∈ E are such that |x − y| ≤ α0 · σ . Then ‖Q(x, ·)−Q(y, ·)‖TV ≤
1
2 · α0 by Lemma 37. We conclude by applying Lemma 19. �

To lower bound the acceptance rate for the RWM kernel, we first prove a result which
holds under a general smoothness condition on the potential U , and then obtain the case of
L-smoothness as a corollary.

LEMMA 39. Suppose that for some nonnegative, nondecreasing ψ , the potential U sat-
isfies the smoothness bound

U(x + h)−U(x)− 〈∇U(x),h
〉≤ψ
(|h|), x, h ∈ E.

1. Then for any σ ≥ 0,

α0 ≥ 1

2
· exp
(
−
∫

N (dz;0, Id) ·ψ(σ · |z|)).
2. Let σ = ς · d−1/2 where ς > 0 is arbitrary, ψ be twice-differentiable, such that for some

c0, c1 > 0, (
ς ·ψ ′′ −ψ ′

)
(t)≤ c0 · exp(c1 · t).

Then

α0 ≥ 1

2
· exp
(−ψ(ς)+O

(
d−1)) ∈�(1).
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PROOF. The proof proceeds by direct calculation. Let x ∈ E be arbitrary. Applying the
growth bound assumption, it holds that

U(x + σ · z)−U(x)≤ 〈∇U(x), σ · z〉+ψ
(
σ · |z|),

and substituting this into (9) gives

α(x)≥
∫

N (dz;0, Id) ·min
{
1, exp

(−〈∇U(x), σ · z〉−ψ
(
σ · |z|))}.

Applying the inequality min{1, a · b} ≥min{1, a} ·min{1, b} establishes that

α(x)≥
∫

N (dz;0, Id) ·min
{
1, exp

(−〈∇U(x), σ · z〉)} ·min
{
1, exp

(−ψ
(
σ · |z|))}

≥
∫

N (dz;0, Id) · exp
(−ψ
(
σ · |z|)) ·min

{
1, exp

(−〈∇U(x), σ · z〉)}

=
∫

N (dz;0, Id) · exp
(−ψ
(
σ · |z|)) ·min

{
1, exp

(+〈∇U(x), σ · z〉)},
where the last equality follows from the change of variables z �→ −z. Averaging these final
two expressions and noting that min{1, a} +min{1, a−1} ≥ 1, it follows that

α(x)≥ 1

2
·
∫

N (dz;0, Id) · exp
(−ψ
(
σ · |z|)).

By the convexity of ψ �→ exp(−ψ), we may apply Jensen’s inequality to bound this integral
from below, and so the first part follows.

Finally, take σ = ς ·d−1/2, and Taylor expand s �→ψ(s1/2) with a second-order remainder
term around s = ς2. Applying the hypothesis on the derivatives of ψ then yields that for
sufficiently large d , there exists F(ς) > 0 such that∫

N (dz;0, Id) ·ψ(ς · d−1/2 · |z|)≤ψ(ς)+ F(ς) · d−1,

and we conclude. �

COROLLARY 40. Under Assumption 31, let σ = ς · d−1/2 · L−1/2 where ς > 0 is arbi-
trary. Then

α0 ≥ 1

2
· exp
(
−1

2
· ς2
)
.

PROOF. Assumption 31 implies that U satisfies the growth bound

U(x + h)−U(x)− 〈∇U(x),h
〉≤ψ
(|h|)

with ψ : r �→ 1
2 ·L · r2. Applying the first part of Lemma 39, we see that

α0 ≥ 1

2
· exp
(
−
∫

N (dz;0, Id) · 1

2
·L · σ 2 · |z|2

)

= 1

2
· exp
(
−1

2
·L · σ 2 · d

)

= 1

2
· exp
(
−1

2
· ς2
)
. �
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4.2. Conductance and spectral gap upper bounds. To complement our lower bounds,
we can show matching upper bounds with respect to dimension under Assumption 31. This
shows that the conductance and spectral gap must decrease at least as fast as O(d−1/2) and
O(d−1) respectively, and that these are the slowest polynomial decays possible. Hence, we
may infer that in terms of optimizing conductance and spectral gap, d−1 is the correct poly-
nomial scaling of σ 2.

We emphasize that the upper bounds are uniform over the class of m-strongly convex
and L-smooth potentials, indicating that the dimension-dependence of this particular class
of target distributions is well-characterized by the analysis. This is in contrast to bounds
which rely only on specific examples exhibiting poor performance, as in minimax complexity
analysis: for example, Wu, Schmidler and Chen (2022) show that the optimal scaling of step-
size with dimension in the Metropolis-adjusted Langevin algorithm is not uniform in this
class.

4.2.1. Conductance upper bounds.

THEOREM 41. Under Assumption 31 and twice continuous-differentiability of U ,

�∗P ≤min
{
4 ·L1/2 · σ,

(
1+m · σ 2)−d/2}

.

Hence, among polynomial scalings of σ , the scaling σ ∼ d−1/2 is optimal with �∗P ∼ d−1/2.

PROOF. The bounds follow from Propositions 44 and 45. Now let σ = ς · L−1/2 · d−β .
If β ≥ 1/2, then we obtain �∗P ∈O(d−β) and this is maximized by taking β = 1

2 . Combined
with Theorem 34 we may conclude that �∗P decays as d−1/2 as d →∞ when β = 1

2 . For
β < 1

2 , we recall that by Proposition 45, the conductance decays faster than any polynomial
in 1/d , and in particular, faster than d−1/2, from which the claim follows. �

LEMMA 42. Under Assumption 31, let x∗ be the (unique) minimizer of U . Then(
m

L

)d/2
·N (x;x∗,L−1 · Id

)≤ π(x)≤
(

L

m

)d/2
·N (x;x∗,m−1 · Id

)
.

PROOF. Applying the definitions of m-strong convexity and L-smoothness, one sees that

m

2
· |x − x∗|2 ≤U(x)−U(x∗)− 〈∇U(x∗), x − x∗

〉≤ L

2
· |x − x∗|2,

and since ∇U(x∗)= 0, this can be simplified to

m

2
· |x − x∗|2 ≤U(x)−U(x∗)≤ L

2
· |x − x∗|2.

Recalling that π(x)= 1
Z
· exp(−U(x)) for some normalizing constant Z, this implies that

(
2π

L

)d/2
·N (x;x∗,L−1 · Id

)≤ π(x) ·Z · exp
(
U(x∗)

)≤ (2π

m

)d/2
·N (x;x∗,m−1 · Id

)
.

By integrating the above inequalities over space, one sees that(
2π

L

)d/2
≤Z · exp

(
U(x∗)

)≤ (2π

m

)d/2
,

and substituting these bounds into the preceding display completes the proof. �
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LEMMA 43. Under Assumption 31 and twice continuous-differentiability of U , Assump-
tion 31 holds for any finite-dimensional marginal of π .

PROOF. Preservation of m-strong log-concavity of the marginals of π is shown by
Saumard and Wellner (2014), Theorem 3.8. For preservation of L-smoothness of the potential
of any marginal of π , write the state as x = (x1, x2), such that π(x1, x2)= exp(−U(x1, x2)),
and define the marginal π(x1) = ∫ exp(−U(x1, x2))dx2 = exp(−V (x1)). Formal computa-
tions give that

∇V (x1)= E
[∇x1U(x1,X2)|X1 = x1

]
,

∇2V (x1)= E
[∇2

x1
U(x1,X2)|X1 = x1

]−Cov
[∇x1U(x1,X2)|X1 = x1

]
.

By the smoothness of U , for any fixed x1 one can bound |∇x1U(x1, x2)| � 1 + |x2|,
|∇2

x1
U(x1, x2)|� 1, and since log-concave measures admit moments of all orders, it is guar-

anteed that the integrals above do indeed exist and are finite. Combining this with the twice
continuous-differentiability of U , we may validly interchange differentiation and integration,
so that the formal identities described above hold.

Recalling that covariance matrices are positive-semidefinite and that U is L-smooth, com-
pute that

∇2V (x1)= E
[∇2

x1
U(x1,X2)|X1 = x1

]−Cov
[∇x1U(x1,X2)|X1 = x1

]
" E
[∇2

x1
U(x1,X2)|X1 = x1

]
" L · Id,

from which the L-smoothness of V follows. �

The proofs the following two propositions involve the identification of appropriate sets
whose conductance can be bounded in terms of σ ; the resulting calculations are somewhat
involved so the proofs are housed in Appendix B.

PROPOSITION 44. Under Assumption 31 and twice continuous-differentiability of U ,

�∗P ≤ 2 ·L1/2 · σ.

PROPOSITION 45. Under Assumption 31,

�∗P ≤
(
1+m · σ 2)−d/2

.

Furthermore, if σ = ς · L−1/2 · d−β with β < 1/2, then �∗P =O(exp(−c · d1−2·β)) for any
c ∈ (0, 1

2 · m
L
· ς2), and in particular, decays faster than any polynomial in 1/d .

4.2.2. Spectral gap upper bounds. A natural question is whether the lower bound for the
spectral gap is of the correct order when σ ∼ d−1/2, that is, whether indeed γP = GapR(P )

scales as d−1. Under Assumption 31, we verify this directly and also show that this is the
optimal polynomial scaling.

THEOREM 46. Under Assumption 31 and twice continuous-differentiability of U ,

γP ≤min
{

1

2
·L · σ 2,

(
1+m · σ 2)−d/2

}
.

Hence, among polynomial scalings of the σ , the scaling σ ∼ d−1/2 is optimal with γP ∼ d−1.
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PROOF. The bounds follow from Lemma 47 and Proposition 45 combined with
Lemma 5. Let σ = ς · L−1/2 · d−β . If β ≥ 1

2 then we obtain γP ∈ O(d−2·β) and this rate
is maximized by taking β = 1

2 . Combined with Corollary 35, we may conclude that γP de-
cays as d−1 as d →∞ when β = 1

2 . On the other hand, if β < 1
2 then γP · d converges to 0

and hence β < 1
2 leads to a faster decay of γP than β = 1

2 . �

LEMMA 47. Let U be L-smooth and twice continuously differentiable. Then

γP ≤ 1

2
·L · σ 2.

PROOF. By the Cramér–Rao inequality (see, e.g., Saumard and Wellner (2014),
eq. 10.25), it holds for any v ∈R

d that

Varπ
(〈v,X〉)≥ v ·Eπ

[∇2(− logπ(X)
)]−1 · v ≥ L−1 · |v|2,

by L-smoothness. For v �= 0, define gv(x) := 〈v, x −Eπ [X]〉, and compute

E(P, gv)= 1

2

∫
π(dx)P (x,dy)

(
gv(y)− gv(x)

)2
= 1

2

∫
π(dx)P (x,dy)〈v, y − x〉2

≤ 1

2

∫
π(dx)Q(x,dy)〈v, y − x〉2

= 1

2

∫
π(dx)N (dz;0, Id)〈v,σ · z〉2

= 1

2
· σ 2 · |v|2.

We obtain

γP =GapR(P )= inf
f∈L2

0(π)

E(P,f )

‖f ‖2
2

≤ E(P, gv)

‖gv‖2
2

≤
1
2 · σ 2 · |v|2
L−1 · |v|2 = 1

2
·L · σ 2.

�

4.3. Implications for the asymptotic variance. In this sub-section, we address the asymp-
totic variance of MCMC estimators computed from RWM chains. We will show that when
using appropriately-tuned RWM chains to compute expectations of functions under π , the
asymptotic variance of these estimators is an inflation of the ideal variance by a factor which
scales linearly with the dimension of the problem. Furthermore, we will exhibit that for a
specific class of functions (in particular, affine functions) that this bound is tight in terms of
its dimension-dependence.

PROPOSITION 48. Let Assumption 31 hold, and σ = ς · L−1/2 · d−1/2 for any ς > 0.
Then, for any f ∈ L2

0(π), the asymptotic variance of f can be bounded as

var(P,f )≤ 210 ·C−2
γ · ς−2 · exp

(
2 · ς2) · κ · d · ‖f ‖2

2.

Additionally, for any linear f ∈ L2
0(π), var(P,f )≥ 2 · ς−2 · d · ‖f ‖2

2.

PROOF. Since P is reversible and GapR(P ) > 0, Id−P is invertible on L2
0(π). We have

var(P,f )= 〈f, (Id+ P) · (Id− P)−1 · f 〉.
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Moreover, by considering the spectral resolution of f with respect to P , it is classical that

〈
f, (Id+ P) · (Id− P)−1 · f 〉≤ 2

GapR(P )
· ‖f ‖2

2,

where GapR(P ) is the right spectral gap of P . Recalling that GapR(P ) ≥ γP (for any re-
versible P ), we apply Corollary 35 to bound

GapR(P )≥ 2−9 ·C2
γ · ς2 · exp

(−2 · ς2) · d−1 · m
L

,

and deduce the first bound. For the second bound, by positivity of P we may write

var(P,f )= 〈f, (Id+ P) · (Id− P)−1 · f 〉≥ 〈f, (Id− P)−1 · f 〉.
Recall the variational representation (see, e.g., Caracciolo, Pelissetto and Sokal (1990)),〈

f, (Id− P)−1 · f 〉= sup
g∈L2

0(π)

{
2 · 〈f,g〉 − E(P, g)

}
.

We will consider taking f : x �→ 〈v, x − Eπ [X]〉, and g = c · f for c ∈ R. By the argument
in the proof of Lemma 47, it holds that

‖f ‖2
2 ≥ L−1 · |v|2, E(P,f )≤ 1

2
· σ 2 · |v|2.

We thus see that

var(P,f )≥ 〈f, (Id− P)−1 · f 〉
= sup

g∈L2
0(π)

{
2 · 〈f,g〉 − E(P, g)

}

≥ sup
c∈R
{
2 · c · ‖f ‖2

2 − c2 · E(P,f )
}

= ‖f ‖2
2

E(P,f )
· ‖f ‖2

2

≥ L−1 · |v|2
1
2 · σ 2 · |v|2 · ‖f ‖

2
2

= 2 · ς−2 · d · ‖f ‖2
2. �

4.4. Discussion of the assumptions. Under Assumption 31, Corollary 35 provides ex-
plicit bounds on the spectral gap of the RWM kernel for any σ > 0. Theorem 46 further
shows that the optimal dependence on dimension is d−1 for this class of target measures.
On the other hand, it is clear from the proof that the lower bounds on the spectral gap and
conductance profile have m-strong convexity and L-smoothness of U as sufficient but not
necessary conditions.

For showing lower bounds, m-strong convexity of the potential is only used to verify an
appropriate isoperimetric profile inequality. Hence, any other method for establishing such
inequalities could be used instead. For instance, one may follow Example 23 to deduce an
isoperimetric profile inequality for any log-concave probability measure; an explicit constant
could be obtained by study of the corresponding overdamped Langevin diffusion. Example 28
could also be used to extend this reasoning to perturbations of log-concave probability mea-
sures. Similarly, for showing lower bounds, L-smoothness is only assumed to establish that
the acceptance probability is uniformly lower bounded above 0, that is, α0 = infx∈E α(x) > 0;
our Lemma 39 shows that this is possible under far less restrictive smoothness conditions on
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U , covering both light-tailed targets and potentials whose gradients are only, for example,
Hölder-continuous. As such, L-smoothness should not be viewed as strictly necessary for the
RWM to be performant; this stands in contrast to various gradient-based MCMC algorithms,
whose performance can deteriorate in the absence of L-smoothness (see, e.g., Livingstone
and Zanella (2022)).

On the other hand, if U has particularly poor regularity (e.g., non-Lipschitz-continuous
gradients), then it can be necessary to scale σ differently in order to stabilize the acceptance
probability away from 0, (see also Vogrinc and Kendall (2021), who study this phenomenon
in the optimal scaling framework). For a concrete example, consider the target with potential
given by U(x)= |x|pp for p ∈ [1,2). Observing that U(σ · z)−U(0)= σp · (∑d

i=1 |zi |p), one
sees that unless σp ∈O(d−1), then α(0) will tend to 0 as d →∞. Similar cautionary exam-
ples which necessitate anomalous scalings of σ can be constructed by designing potentials
with “sharp” growth around a local minimum, and following the strategy of Proposition 45.

5. Convergence and mixing time for RWM. In this section, we analyze the mixing
time for the RWM kernel P defined in Section 4 under Assumption 31.

5.1. Three phase mixing. The mixing time bound essentially consists of up to three
phases. If the initial chi-squared divergence is very large, then there is an initial phase dur-
ing which the convergence takes place at an exponential rate depending only on α0 (and in
particular, not directly on σ 2). Subsequently, there is a secondary phase during which conver-
gence takes place at a faster-than-exponential rate, depending now on both σ 2 and α0. Finally,
once the chi-squared divergence drops below a universal constant (e.g., 8), the convergence
is again exponential, again with a rate depending on both σ 2 and α0. Qualitatively similar
behaviour was also observed (for a different algorithm) in the work of Mou et al. (2022). In
the proof of Theorem 49 in Appendix B we provide two additional different bounds, valid
for any ς > 0, which are stronger than the stated bound. In particular, the stated bound may
be conservative when u0 is sufficiently small, since the first phase can be nonexistent and the
second phase is bounded fairly crudely.

THEOREM 49. Under Assumption 31, let μ� π be a probability measure and u0 =
χ2(μ,π). Let σ = ς ·L−1/2 · d−1/2 and κ = L/m, with ς > 0 arbitrary and let the universal
constants C�,Cγ be as defined in Lemma 27. Then, to guarantee that χ2(μP n,π)≤ εMix ∈
(0,8) we may take

n≥ 2+ 210 · exp
(
ς2) · log

(
max{u0,1})

+ 214 ·C−2
� · exp

(
2 · ς2) · ς−2 · κ · d · {log

(
16 ·C−2

� ς−2)+ log(κ · d)+ ς2}
+ 26 ·C−2

γ · exp
(
2 · ς2) · ς−2 · κ · d · log

(
8

εMix

)
,

that is, of order O(logu0 + κ · d · log(κ · d)+ κ · d · log(ε−1
Mix)).

5.2. Two feasible “warm starts”. We provide two complexity bounds based on The-
orem 49, corresponding to two different algorithmically feasible initial distributions μ. In
Remark 50, we consider a Gaussian initial distribution centered at the mode of the density π

with covariance L−1 · Id ; when U is convex, identifying the mode numerically is feasible and
hence the strategy relies on explicit knowledge of L. In Remark 51 we consider the approach
suggested by Belloni and Chernozhukov (2009), for which the initial distribution is given
by the distribution of the first “accepted” proposal from Q(x0, ·) where x0 is arbitrary. This
does not require explicit knowledge of L, only for example, a bound that allows one to tune
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σ such that ς ∈�(1), and corresponds directly to how RWM chains are often initialized in
practice. In particular, we observe that the RWM mixing time is fairly robust to the choice of
initial point x0 as long as it is not very far from the mode, and this is due to the fast phases of
convergence identified in Theorem 49.

REMARK 50. If μ = N (x∗,L−1 · Id), with x∗ the mode of π , then by Lemma 42 we
may obtain the bound u0 = χ2(μ,π)≤ κd/2. It then holds that logu0 =O(d · logκ), and one
obtains a mixing time bound which scales as O(κ ·d · log(κ ·d)+κ ·d · log(ε−1

Mix)). In relation
to the comments preceding Theorem 49, we note that by taking ς sufficiently small, one may
consider (13)–(14) in the proof of Theorem 49, ensure u0 ≤ 4 · v−1◦ and thereby reduce the
complexity to O(κ · d · log(d · logκ)+ κ · d · log(ε−1

Mix)). For example, taking ς2 = 1
2 as in

Remark 36, one can deduce that

n≥ 2+ 96982 · κ · d · log
(

d

2
· logκ

)
+ 3446 · κ · d · log

(
8

εMix

)
,

is sufficient for χ2(μP n,π)≤ εMix ∈ (0,8) when κd/2 > 8.

In Example 33, we have κ ≤ 1+ 1
4 ·σ 2

0 ·λMax(AA ) and if A is a random matrix with i.i.d.
entries from a distribution with mean 0, variance 1 and finite 4th moment, then Yin, Bai and
Krishnaiah (1988), Theorem 3.1, gives 1

N
λMax(AA )→ 1

α
(1+√α)2 a.s., where d/N → α.

Hence, if σ 2
0 is O(d−1) then it is reasonable to expect κ independent of d in this regime and

hence the O(d logd) scaling of n given above. The precise bounds are likely quite loose,
for example, d = 100, κ = 10, εMix = 1

2 give n ∼ 0.47× 109, but yet are not astronomical.
The analysis also does not take into account explicitly any concentration of the posterior
distribution, and indeed the bounds hold irrespective of the values the data take.

REMARK 51. There is another approach to obtaining a warm start which neatly sidesteps
the need for any preliminary optimization, suggested by Belloni and Chernozhukov (2009).
The idea is to initialize the chain by a single accepted move of the Metropolis kernel from
some arbitrary point x0, that is,

μ(dx)= P α(x0,dx)

:=Q(x0,dx) · α(x0, x) · α(x0)
−1.

To this end, one can compute directly (in fact, for any Metropolis–Hastings chain) that

π(dx) · P α(x,dy)= π(dx) ·Q(x,dy) · α(x, y) · α(x)−1

= π(dy) ·Q(y,dx) · α(y, x) · α(x)−1.

Disintegrating this joint measure appropriately, one sees for the RWM that

dP α(x0, ·)
dπ

(x)= α(x, x0) · α(x0)
−1 · dQ(x, ·)

dπ
(x0)

≤ 1 · α−1
0 ·
(

sup
y∈E

dQ(x, ·)
dLeb

(y)

)
·
(

dπ

dLeb
(x0)

)−1
.

Computing that α−1
0 ≤ 2 · exp(1

2 · ς2), supy∈E
dQ(x,·)

dLeb (y)= (2 · π · σ 2)−d/2, ( dπ
dLeb(x0))

−1 ≤
κd/2 · (2 · π ·L−1)d/2 · exp(1

2 ·L · |x0 − x∗|2), one obtains that

sup
x∈E

dP α(x0, ·)
dπ

(x)≤ 2 · exp
(

1

2
· ς2
)
·
(

κ · d
ς2

)d/2
· exp
(

1

2
·L · |x0 − x∗|2

)

∈ exp
(
O
(
d · log(d · κ)+L · |x0 − x∗|2)),
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when ς is of order 1. As such, provided that L · |x0 − x∗|2 ∈ O(κ · d · log(κ · d)), it holds
that logu0 ∈O(κ · d · log(κ · d)), and one obtains a mixing time bound which again scales
as O(κ · d · log(κ · d)+ κ · d · log(ε−1

Mix)). From the perspective of complexity analysis, it is
thus essentially sufficient to initialize the chain by identifying some point within a reasonable
distance, that is, O(( d

m
· log(κ ·d))1/2) of the mode, and waiting until a single proposed move

is accepted.

5.3. Comparisons to existing results. The prior work of Belloni and Chernozhukov
(2009) is closely related; the authors study the application of MCMC techniques to frequen-
tist estimation tasks for which direct optimization of the objective function is challenging.
For their application, a different isoperimetric inequality is used, which allows them to han-
dle potentials which are nonconvex, nonsmooth, or even both. However they assume that their
target distributions are supported on a (large) closed ball. Their complexity bounds are essen-
tially obtained by estimating the spectral gap, and constructing an appropriate “warm start”,
that is, an initial distribution μ which satisfies dμ

dπ
≤W <∞, which implies a bound on the

initial L2 distance to equilibrium, recalled in Remark 51. Their result holds for a particular
choice of σ 2, which depends on theoretical quantities that are typically unknown. In contrast,
our bounds are valid for any σ 2. Their conductance bound is of the form �∗P ∈�(d−1), as
opposed to the �∗P ∈ �(d−1/2) that we find. This may appear suboptimal, but it may also
be the case that their class of target distributions is sufficiently harder than those which we
consider, to the point that the conductance is genuinely worse in this way.

Closest to our work are the twin papers Dwivedi et al. (2019) and Chen et al. (2020), which
give complexity bounds for the RWM under Assumption 31. Under a “feasible” Gaussian
initial law (roughly as in Remark 50), Dwivedi et al. (2019) obtain complexity bounds of
O(d2 · κ2 · log1.5(κ · ε−1

Mix)) which Chen et al. (2020) refined to O(d · κ2 · log(d · ε−1
Mix)) by

making use of the conductance profile framework; we observe that our complexity analysis
implies a weaker dependence on κ . Their results also assume precise values of σ 2 that are
typically unknown in practical applications, in contrast with ours.

6. Convergence and mixing time for pCN. In this section, we apply the same technique
to analyze the convergence to equilibrium of the preconditioned Crank–Nicolson algorithm.
We consider the following class of distributions, consistent with both Assumptions 9 and 31:

ASSUMPTION 52. The target measure π on E=R
d can be written

π(dx)∝N (dx;0,C) · exp
(−(x)

)
,

where  is convex, L-smooth, and minimized at x = 0, and C is a positive definite covariance
matrix.

Letting ν =N (0,C), throughout this section we denote by P the pCN kernel defined by
(1), with Q the ν-reversible Gaussian kernel defined for a fixed but arbitrary ρ ∈ (0,1) by

Q(x,A)=
∫

1A(ρ · x + η · z)N (dz;0,C), x ∈ E,A ∈ E ,

where ρ2 + η2 = 1. We will refer to η as the step-size of this kernel, and denote α0 :=
infx∈E α(x). In particular, we have that � ∝ exp(−) is the density of π w.r.t. the reference
measure ν. By Doucet et al. (2015), Proposition 3(i), we may deduce that P is positive, taking
in their notation χ = ν and r(u, v)=N (u;ρ1/2 · v, (1− ρ) ·C).

The pCN algorithm is particularly popular in Bayesian inverse problems (see, e.g., Stuart
(2010), Example 5.3), where C is typically a finite section of some infinite-dimensional trace-
class covariance operator. As with RWM, one can handle relaxations of L-smoothness of 

by a suitable adaptation of Lemma 39.
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REMARK 53. Assume π has an m-strongly log-concave density w.r.t. Lebesgue, with
associated potential U minimized at 0. Then in Assumption 52 one may take C = m−1 · Id

and (x) = U(x) − 1
2 · m · |x|2. We observe that if U is L′-smooth, then  is (L′ − m)-

smooth, and in particular we obtain the pCN condition number κ = L/m = κ ′ − 1, where
κ ′ = L′/m is the condition number one would associate with the RWM kernel. Our results
for pCN with more general C can therefore be interpreted as applying to the class of densities
with respect to Lebesgue which possess m-strongly convex and L-smooth potentials, where
we see an improvement over RWM in terms of the condition number, at least if one is willing
to use the minimizer of U to define an appropriate parameterization.

Throughout this section, we write Tr(C) for the trace of a matrix C, and define the norm

(10) |x|C−1 := ∣∣C−1/2 · x∣∣, x ∈ E.

As with RWM, one can derive a spectral gap estimate for pCN by applying Theorem 18.

THEOREM 54. Under Assumption 52, π admits a regular, concave isoperimetric mino-
rant Ĩπ = ϕγ ◦�−1

γ w.r.t. | · |C−1 and

�∗P ≥
1

4
·Cγ · α2

0 · η, γP ≥ 2−5 ·C2
γ · α4

0 · η2,

where the constant Cγ is defined in Lemma 27. Writing η = ς · (L · Tr(C))−1/2 ∈ (0,1), we
have α0 ≥ 1

2 · exp(−1
2 · ς2), and hence

(11) γP ≥ 2−9 ·C2
γ · exp

(−2 · ς2) · ς2 · (L · Tr(C)
)−1

.

Optimizing over ς gives

γP ≥ 2−10 ·C2
γ · e−1 · (L · Tr(C)

)−1 ≥ 3.62784× 10−5 · (L · Tr(C)
)−1

.

PROOF. This is proven in an analogous fashion to Theorem 34. The fact that Ĩπ = ϕγ ◦
�−1

γ is an isoperimetric minorant for π is established in Lemma 55, and the close-coupling

condition for pCN is established with ε = 1
2 · α0 and δ = α0 · η

ρ
in Lemma 57. Thus we can

apply Theorem 18 to deduce the conductance bound �∗P ≥ 1
8 · α0 · min{1,2 · Cγ · α0 · η

ρ
},

which we then simplify by recalling that ρ ≤ 1 and 2 ·Cγ · α0 · η ≤ 2 ·Cγ · 1 · 1 < 1. Finally,
the lower bound on the acceptance rate is established in Lemma 58. �

6.1. Lower bounds for pCN. We now give appropriate results related to isoperimetry for
the pCN algorithm. The key subtlety to establishing an appropriate isoperimetric inequality
for the pCN kernel is the fact that we want to change metric from the flat Euclidean metric
| · | to the metric | · |C−1 .

LEMMA 55. Under Assumption 52, π admits ϕγ ◦ �−1
γ as an isoperimetric minorant

w.r.t. the metric dC(x, y)= |x − y|C−1 .

PROOF. First, define πW = (x �→ C−1/2 · x)#π . One checks that the density of πW is
given by N (x;0, Id) · exp(−(C1/2 · x)), for which the potential 1

2 · |x|2 + (C1/2 · x)

is 1-strongly convex. By Lemma 27, one sees that πW admits ϕγ ◦ �−1
γ as an isoperimet-

ric minorant w.r.t. | · |. Defining dC(x, y) := |x − y|C−1 , one can apply Lemma 26 with
(μ1,E1,d1)= (πW ,E, | · |), (μ2,E2,d2)= (π,E,dC), noting that x �→ C−1/2 · x is an isome-
try between these two metric spaces, to conclude that π admits ϕγ ◦�−1

γ as an isoperimetric
minorant with respect to dC. �
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The following lemma gives a useful bound on the total variation distance between the
proposals, analogous to Lemma 37; the proof can be found in Appendix B.

LEMMA 56. If v > 0 and x, y ∈ E satisfy |x − y|C−1 ≤ v · η
ρ

,

∥∥Q(x, ·)−Q(y, ·)∥∥TV ≤
1

2
· v.

LEMMA 57. P is (| · |C−1, α0 · η
ρ
, 1

2 · α0)-close-coupling.

PROOF. Assume x, y ∈ E are such that |x−y|C−1 ≤ α0 · ηρ . Then ‖Q(x, ·)−Q(y, ·)‖TV ≤
1
2 · α0 by Lemma 56. Since Q is ν-reversible, we may apply Lemma 19 to conclude.

�

LEMMA 58. Let κ̃ = L · Tr(C). The pCN chain satisfies

α(x)≥ 1

2
· exp
(
−1

2
· η2 · κ̃

)
> 0, x ∈ E.

In particular, take η := ς · κ̃−1/2 where ς ∈ (0, κ̃1/2) is arbitrary. Then

α0 := inf
x∈E

α(x)≥ 1

2
· exp
(
−1

2
· ς2
)
.

PROOF. For x ∈ E, let x̃ := ρ · x and w := x̃ + η · z, with z ∼ N (0,C). Recalling that
ρ ∈ (0,1), we can apply convexity of  to see that

(x̃)=
(
(1− ρ) · 0+ ρ · x)

≤ (1− ρ) ·(0)+ ρ ·(x)

=⇒ (x̃)−(0)≤ ρ · ((x)−(0)
)

≤(x)−(0)

=⇒ (x̃)≤(x).

Applying L-smoothness shows that

(w)≤(x̃)+ 〈∇(x), η · z〉+ 1

2
·L · η2 · |z|2

≤(x)+ 〈∇(x), η · z〉+ 1

2
·L · η2 · |z|2.

From here, we imitate the proof of Lemma 39, writing

α(x)=
∫

N (dz;0,C) ·min
{
1, exp

(−[(w)−(x)
])}

≥
∫

N (dz;0,C) ·min
{

1, exp
(
−
[〈∇(x), η · z〉+ 1

2
·L · η2 · |z|2

])}

≥
∫

N (dz;0,C) ·min
{
1, exp

(−[〈∇(x), η · z〉])} · exp
(
−1

2
·L · η2 · |z|2

)

≥ 1

2
·
∫

N (dz;0,C) · exp
(
−1

2
·L · η2 · |z|2

)

≥ 1

2
· exp
(
−
∫

N (dz;0,C) · 1

2
·L · η2 · |z|2

)
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= 1

2
· exp
(
−1

2
·L · η2 · Tr(C)

)
.

The second inequality follows by algebraic substitution. �

6.2. Mixing time for pCN. We now give mixing time results for the pCN algorithm; the
proof of Theorem 59 is in Appendix B.

THEOREM 59. Under Assumption 52, let μ� π be a probability measure and u0 =
χ2(μ,π). Let κ̃ = L · Tr(C) and η = ς · κ̃−1/2 with ς ∈ (0, κ̃1/2) arbitrary and let the uni-
versal constants C�,Cγ be as defined in Lemma 27. Then, to guarantee that χ2(μP n,π)≤
εMix ∈ (0,8) we may take

n≥ 2+ 210 · exp
(
ς2) · log

(
max{u0,1})

+ 214 ·C−2
� · exp

(
2 · ς2) · ς−2 · κ̃ · {log

(
16 ·C−2

� · ς−2 · κ̃)+ ς2}
+ 26 ·C−2

γ · exp
(
2 · ς2) · ς−2 · κ̃ · log

(
8

εMix

)
,

that is, of order O(logu0 + κ̃ log(κ̃)+ κ̃ log(ε−1
Mix)).

REMARK 60. We note that in contrast to the RWM, the assumptions made on the tar-
get for pCN allow for a dimension-independent control of the mixing behaviour. This phe-
nomenon has been observed since at least Hairer, Stuart and Vollmer (2014), who establish
the dimension-robustness of the spectral gap under similar assumptions, though with much
less explicit quantitative results. On the other hand, one can still quantify the difficulty of
navigating the target measure through the roughness of the potential  , as summarized by L,
and the effective dimension of the prior, as summarized by Tr(C); see Agapiou et al. (2017)
for related notions.

REMARK 61. An analogous initial distribution to that in Remark 50 is μ = N (0,C ·
(Id +L ·C)−1), for which

dμ

dπ
(x)≤ det(Id +L ·C)1/2 ≤ exp

(
1

2
·L · Tr(C)

)
.

Hence, logu0 ∈O(κ̃), from which one concludes that the mixing time is bounded as O(κ̃ ·
log κ̃ + κ̃ · log ε−1

Mix).

6.3. Comparison with independent Metropolis–Hastings. A nonlocal pCN chain may be
defined by taking ρ = 0, and hence η = 1. This corresponds to an independent Metropolis–
Hastings (IMH) kernel with proposal distribution q(A) =N (A;0,C). Theorem 54, strictly
speaking, does not apply but does allow consideration of ρ arbitrarily close to 0 by taking
ς2 arbitrarily close to L · Tr(C), resulting in a spectral gap bound of order α4

0 ∼ exp(−2 ·
L · Tr(C)). This is somewhat crude, perhaps because the analysis here is more suitable for
Markov chains with local behaviour.

On the other hand, we may deduce by Gåsemyr (2006), Theorem 2, that the spectral gap
of the IMH is precisely

γP = α0 = inf
x∈E

dq

dπ
(x)= exp

(
(0)
) ∫

N (x;0,C) exp
(−(x)

)
dx,

and we will see that when ρ = 0, the bound on α0 deteriorates rapidly with d . By L-
smoothness and ∇(0)= 0, we have (x)−(0)≤ L

2 |x|2, so that we have the estimate

γP ≥
∫

N (x;0,C) exp
(
−L

2
|x|2
)

dx = det(Id +LC)−1/2.



4054 ANDRIEU, LEE, POWER AND WANG

In the context of Remark 53, we obtain

γP ≥
(

1+ L

m

)−d/2
= (1+ κ)−d/2,

which decreases much faster than d−1; this also implies poor scaling of independent
Metropolis–Hastings in comparison with RWM. In general, we only obtain the bound

γP ≥ exp
(
−1

2
·L · Tr(C)

)
,

where the exponential dependence on L · Tr(C) is much worse than the linear dependence
in (11) when ς is chosen appropriately. Hence, significant improvements in the spectral gap
bound are obtained by using appropriately tuned “local” Markov chains.

APPENDIX A: NOTATION

• The Euclidean norm on E = R
d is denoted | · |, which we will also use to denote the

associated metric.
• We write Leb, and plainly dx, for the Lebesgue measure on R

d .
• We write L2(π) for the Hilbert space of (equivalence classes of) real-valued π -square-

integrable measurable functions with inner product

〈f,g〉 =
∫

E
f (x)g(x)dπ(x),

and corresponding norm ‖ · ‖2. For g ∈ L2(π), Varπ(g) := ‖g − π(g)‖2
2. We write L2

0(π)

for the set of functions f ∈ L2(π) which also satisfy π(f )= 0.
• Given a set A ∈ E with π(A) > 0, we define the probability measure πA on (E,E ) via

πA(·) := π(· ∩A)/π(A).
• Given a probability measure π and a function T on E, we define the pushforward measure

of π under the action of T by (T#π)(A) := π(T −1(A)).
• For a set A ∈ E , its complement in E is denoted by A�. We denote the corresponding

indicator function by 1A : E→{0,1}.
• For two sets A,B ∈ E and a metric d on E, the distance between the two sets is given by

d(A,B) := inf
{
d(x, y) : x ∈A,y ∈ B

}
.

When one of the sets is a singleton, we will simply write d(x,B) for d({x},B), say.
• For two measures μ and ν, we write ν � μ to mean that ν is absolutely continuous with

respect to μ.
• For two probability measures μ and ν on (E,E ), we let μ⊗ ν(A×B) := μ(A) · ν(B) for

A,B ∈ E . For a Markov kernel P(x,dy) on E× E , we write for Ā ∈ E ⊗ E , the minimal
product σ -algebra, μ⊗ P(Ā) := ∫Ā μ(dx)P (x,dy).

• For a probability measure μ� π , the chi-squared divergence between μ and π is given
by χ2(μ,π) := ‖ dμ

dπ
− 1‖2

2.
• A point mass distribution at x is denoted by δx .
• We associate, to a π -invariant Markov kernel P , the bounded linear operator also denoted

P : L2(π)→ L2(π), given by Pf (x) = ∫E P(x,dy)f (y). We may refer to P as a kernel
or as an operator, the meaning being clear from the context.

• We write Id for the identity mapping on L2(π), and id for the identity mapping on R, and
Id for the d × d identity matrix.

• Given a bounded linear operator P : L2(π) → L2(π), we define the Dirichlet form
E(P,f ) := 〈(Id− P)f,f 〉 for any f ∈ L2(π).
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• For a mapping T : (E,d)→ (E′,d′) between metric spaces, the Lipschitz norm is defined
as |T |Lip := supx �=y

d′(T (x),T (y))
d(x,y)

.
• The spectrum of a bounded linear operator P is the set

S(P ) := {λ ∈C : P − λ · Id is not invertible}.
• For a π -invariant Markov kernel P , we denote by S0(P ) the spectrum of the restriction of

P to L2
0(π). We define the spectral gap of P to be γP := 1− sup |S0(P )|.

• If P is a π -reversible Markov kernel, then S0(P ) ⊆ [−1,1] and we may define the right
spectral gap as GapR(P ) := 1− supS0(P ), which satisfies (see, e.g., Douc et al. (2018),
Theorem 22.A.19),

GapR(P )= inf
g∈L2

0(π),g �=0

E(P, g)

‖g‖2
2

.

• We say that a π -reversible Markov kernel P is positive if 〈f,Pf 〉 ≥ 0 for all f ∈ L2(π).
In this case, γP =GapR(P ).

• We write N (m,�) where m ∈R
d and � is a d × d covariance matrix, for the correspond-

ing Gaussian distribution on R
d , N (x;m,�) for its density with respect to Lebesgue at

x ∈R
d and N (A;m,�) for the measure it assigns to A ∈ E .

• We adopt the following O (resp. �) notation to indicate when functions grow no faster
than (resp. no slower than) other functions. For a ∈R∪ {∞},
– If f (x) ∈O(g(x)) as x → a, this means that lim sup

x→a
|f (x)
g(x)

|<∞. When a =+∞, then

we may drop explicit mention of a.
– If f (x) ∈ �(g(x)) as x → a, this means that lim inf

x→a
|f (x)
g(x)

| > 0. In particular f ∈
O(g) ⇐⇒ g ∈�(f ).

– We will write f (x) ∈�(g(x)) as x → a if both f (x) ∈O(g(x)) and f (x) ∈�(g(x))

as x→ a.

APPENDIX B: ADDITIONAL PROOFS

PROOF OF LEMMA 6. For the case v > 1
2 , we know that �P (v) ≥ GapR(P ), since we

are taking an infimum over a smaller set of functions for any v. By Lemma 5, we have
GapR(P )≥ 1

2 · [�∗P ]2. Now consider the case v ∈ (0, 1
2 ], let A be a measurable set such that

0 < π(A)≤ v, and let h ∈ C+0 (A). Consider the quantity

E1(P,h) := 1

2
·
∫

π(dx) · P(x,dy) · ∣∣h(y)− h(x)
∣∣

and observe that, by symmetry of π ⊗ P , one can write

E1(P,h)=
∫

π(dx) · P(x,dy) · ∣∣h(y)− h(x)
∣∣ · 1[h(x) < h(y)

]

=
∫

π(dx) · P(x,dy) · 1[h(x) < h(y)
] · (h(y)− h(x)

)

=
∫

π(dx) · P(x,dy) ·
∫
t≥0

1
[
h(x)≤ t < h(y)

]
dt

=
∫
t≥0

(∫
π(dx) · P(x,dy) · 1[h(x)≤ t < h(y)

])
dt.
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Now, observe that if one defines Ht := {x ∈A : h(x) > t}, then∫
π(dx) · P(x,dy) · 1[h(x)≤ t < h(y)

]= (π ⊗ P)
(
H �

t ×Ht

)
= (π ⊗ P)

(
Ht ×H �

t

)
.

Recalling that Ht ⊆A and hence that π(Ht)≤ π(A), one sees that if π(Ht) > 0,

(π ⊗ P)
(
Ht ×H �

t

)= π(Ht) · (π ⊗ P)(Ht ×H �
t )

π(Ht)

≥ π(Ht) · inf
{
(π ⊗ P)(S × S�)

π(S)
: 0 < π(S)≤ π(A)

}

= π(Ht) ·�P

(
π(A)
)
,

while the inequality holds trivially if π(Ht)= 0. It thus holds that

E1(P,h)=
∫
t≥0

(∫
π(dx) · P(x,dy) · 1[h(x)≤ t < h(y)

])
dt

=
∫
t≥0

(π ⊗ P)
(
Ht ×H �

t

)
dt

≥
∫
t≥0

π(Ht) ·�P

(
π(A)
)

dt

=
(∫

t≥0

∫
π(dx) · 1[h(x) > t

]
dt

)
·�P

(
π(A)
)

=
(∫

π(dx) ·
∫
t≥0

1
[
h(x) > t

]
dt

)
·�P

(
π(A)
)

=
(∫

π(dx) · h(x)dt

)
·�P

(
π(A)
)

= π(h) ·�P

(
π(A)
)
.

Now, let g ∈C+0 (A), and take h= g2 in the above to see that

π
(
g2) ·�P

(
π(A)
)≤ 1

2
·
∫

π(dx)P (x,dy)
∣∣g(x)2 − g(y)2∣∣

≤ 1

2
·
(∫

π(dx)P (x,dy)
∣∣g(x)− g(y)

∣∣2)1/2

×
(∫

π(dx)P (x,dy)
∣∣g(x)+ g(y)

∣∣2)1/2

≤ 1

2
· (2 · E(P,g)

)1/2 · (4 · π(g2))1/2

= 21/2 · E(P,g)1/2 · π(g2)1/2
,

from which we may deduce that

1

2
·�P

(
π(A)
)2 ≤ E(P,g)

π(g2)
≤ E(P,g)

Varπ(g)
.

Taking an infimum over g shows that λP (A) ≥ 1
2 ·�P (π(A))2, and taking an infimum over

A shows that �P (v)≥ 1
2 ·�P (v)2. �
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PROOF OF LEMMA 15. For A ∈ E , define the sets

S1 :=
{
z ∈A : P (z,A�)< 1

2
· ε
}
,

S2 :=
{
z ∈A� : P(z,A) <

1

2
· ε
}

and S3 := (S1 ∪ S2)
�, and let θ ∈ (0,1). We consider two cases. First, we establish that when

either π(S1)≤ θ · π(A) or π(S2)≤ θ · π(A�), then

(12) (π ⊗ P)
(
A×A�)≥ 1

2
· (1− θ) · ε ·min

{
π(A),π

(
A�)}.

If π(S1)≤ θ · π(A) then

π(A)= π(S1)+ π(A \ S1)

≤ θ · π(A)+ π(A \ S1)

=⇒ π(A \ S1)≥ (1− θ) · π(A).

Now,

(π ⊗ P)
(
A×A�)≥ (π ⊗ P)

(
(A \ S1)×A�)

≥ 1

2
· ε · π(A \ S1)

≥ 1

2
· (1− θ) · ε · π(A).

Similarly, if π(S2)≤ θ · π(A�) then

π
(
A�)= π(S2)+ π

(
A� \ S2

)
.

≤ θ · π(A�)+ π
(
A� \ S2

)
=⇒ π

(
A� \ S2

)≥ (1− θ) · π(A�),
and arguing as before:

(π ⊗ P)
(
A� ×A

)≥ (π ⊗ P)
((

A� \ S2
)×A
)

≥ 1

2
· ε · π(A� \ S2

)

≥ 1

2
· (1− θ) · ε · π(A�).

The first claim thus follows. In the second case, π(S1) > θ ·π(A) and π(S2) > θ ·π(A�). As
noticed by Dwivedi et al. (2019), reversibility is not required to establish the following

(π ⊗ P)
(
A×A�)= (π ⊗ P)

(
E×A�)− [(π ⊗ P)

(
A� × E

)− (π ⊗ P)
(
A� ×A

)]
= π
(
A�)− π

(
A�)+ (π ⊗ P)

(
A� ×A

)
= (π ⊗ P)

(
A� ×A

)
.
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We then compute

(π ⊗ P)
(
A×A�)= 1

2
· (π ⊗ P)

(
A×A�)+ 1

2
· (π ⊗ P)

(
A� ×A

)

≥ 1

2
· (π ⊗ P)

(
(A \ S1)×A�)+ 1

2
· (π ⊗ P)

((
A� \ S2

)×A
)

≥ 1

4
· ε · π(A \ S1)+ 1

4
· ε · π(A� \ S2

)

= 1

4
· ε · π(S3).

Now for (z, z′) ∈ S1 × S2 we have∥∥P(z, ·)− P
(
z′, ·)∥∥TV ≥ P(z,A)− P

(
z′,A
)

= 1− P
(
z,A�)− P

(
z′,A
)

> 1− ε.

This implies that d(S1, S2) = inf{|z − z′| : (z, z′) ∈ S1 × S2} ≥ δ, since P is (d, δ, ε)-close
coupling. Hence, using Definition 10 and monotonicity of F ,

(π ⊗ P)
(
A×A�)≥ 1

4
· ε · π(S3)

≥ 1

4
· ε · d(S1, S2) · F (min

{
π(S1),π(S2)

})

≥ 1

4
· ε · δ · F (min

{
θ · π(A), θ · π(A�)}).

We conclude by combining this inequality with (12) and considering A with π(A)≤ 1
2 . �

PROOF OF THEOREM 18. By Corollary 16, we have

�P (v)≥ 1

4
· ε ·min

{
1,

1

2
· δ · Ĩπ (1

2 · v)

1
2 · v

}
, v ∈ (0,1/2],

and the bounds on �∗P and γP follow then from Definition 3, Lemma 5 and positivity of P .
Writing h= dμ

dπ
and un := Varπ(P nh)= χ2(μP n,π), we recall by Theorem 8 that in order

to ensure that un ≤ εMix, it suffices to take

n≥ 2+ 4 ·
∫ 1/2

min{4·u−1
0 ,1/2}

dv

v ·�P (v)2 +
[
�∗P
]−2 · log

(
max
{

min{u0,8}
εMix

,1
})

.

Then for v ∈ (0, v∗), as defined in (8), it holds that �P (v)≥ 1
4 · ε, and for v ∈ (v∗, 1

2), it holds

that �P (v)≥ 1
8 · ε · δ ·

Ĩπ ( 1
2 ·v)

1
2 ·v

. One thus writes

∫ 1/2

min{4·u−1
0 ,1/2}

1

v ·�P (v)2 dv =
∫ max{min{4·u−1

0 ,1/2},v∗}
min{4·u−1

0 ,1/2}
1

v ·�P (v)2 dv

+
∫ 1/2

max{min{4·u−1
0 ,1/2},v∗}

1

v ·�P (v)2 dv.
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We treat the two integrals separately. For the first, write

∫ max{min{4·u−1
0 ,1/2},v∗}

min{4·u−1
0 ,1/2}

dv

v ·�P (v)2 ≤
∫ max{min{4·u−1

0 ,1/2},v∗}
min{4·u−1

0 ,1/2}
1

v · (1
4 · ε)2

dv

= 24 · ε−2 · log
(

max{min{4 · u−1
0 ,1/2}, v∗}

min{4 · u−1
0 , 1

2}
)

= 24 · ε−2 ·max
{

log
(

u0

4 · v−1∗

)
,0
}
,

where the final equality follows from a case-by-case analysis. For the second, write∫ 1/2

max{min{4·u−1
0 ,1/2},v∗}

dv

v ·�P (v)2

≤
∫ 1/2

max{min{4·u−1
0 ,1/2},v∗}

1

v · (1
8 · ε · δ ·

Ĩπ ( 1
2 ·v)

1
2 ·v

)2
dv

= 26 · ε−2 · δ−2 ·
∫ 1/2

max{min{4·u−1
0 ,1/2},v∗}

(1
2 · v)2

v · Ĩπ (1
2 · v)2

dv

= 26 · ε−2 · δ−2 ·
∫ 1/2

max{min{4·u−1
0 ,1/2},v∗}

(1
2 · v)

Ĩπ (1
2 · v)2

d
(

1

2
· v
)

= 26 · ε−2 · δ−2 ·
∫ 1/4

max{min{2·u−1
0 ,1/4},v∗/2}

ξ

Ĩπ (ξ)2
dξ.

For the final term, we have �∗P = �P (1
2) ≥ 2−2 · ε · min{1,2 · δ · Ĩπ (1

4)}. We conclude by
combining these bounds. �

PROOF OF LEMMA 37. This is obtained via Pinsker’s inequality. First compute directly
that

KL
(
Q(x, ·),Q(y, ·))= 1

2 · σ 2 · |x − y|2.
Recalling Pinsker’s inequality, we deduce that

∥∥Q(x, ·)−Q(y, ·)∥∥TV ≤
(

1

2
·KL
(
Q(x, ·),Q(y, ·)))1/2

= 1

2 · σ · |x − y|. �

PROOF OF PROPOSITION 44. First, let ν1 be a median of x1, the first coordinate of x,
under π , and let x∗,1 be the mode of the marginal law of x1 under π , which exists and is
unique as a consequence of Lemma 43. Now, define A= {x ∈ E : x1 ≥ ν1}, so that π(A)= 1

2 .
We let Z ∼N (0, Id), and by neglecting the acceptance probability, we obtain the bounds

(π ⊗ P)
(
A×A�)= ∫

A
π(dx)P

(
x,A�)

=
∫
A

π(dx)

∫
E
N (dz;0, Id) ·min

{
1,

π(x + σ · z)
π(x)

}
· 1

A�(x + σ · z)

≤
∫
A

π(dx)P
(
x + σ ·Z ∈A�)
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=
∫
A

π(dx)P(x1 + σ ·Z1 < ν1)

=
∫
x1≥ν1

π1(dx1)P(x1 + σ ·Z1 < ν1),

where π1 is the marginal law of x1 under π . Recall that by Lemma 43, π1 will also be m-
strongly log-concave and admit an L-smooth potential, and so we may apply Lemma 42 to
control the density of π1 as π1(dx1)≤ ( L

m
)1/2 ·N (dx1;x∗,1,m−1). Substituting this, we may

bound

(π ⊗ P)
(
A×A�)≤ (L

m

)1/2
·
∫
x1≥ν1

N
(
dx1;x∗,1,m−1)

P(x1 + σ ·Z1 < ν1)

=
(

L

m

)1/2
·
∫
x1≥ν1

N
(
dx1;x∗,1,m−1)

P

(
Z1 <

ν1 − x1

σ

)

≤
(

L

m

)1/2
·
∫
x1≥ν1

N
(
dx1;x∗,1,m−1) exp

(
− 1

2 · σ 2 · (ν1 − x1)
2
)

=
(

L

2π

)1/2
·
∫
x1≥ν1

exp
(
−m

2
· (x1 − x∗,1)2 − 1

2 · σ 2 · (ν1 − x1)
2
)

dx1,

where we have used the Chernoff bound P(Z1 ≤−z)≤ exp(−1
2z2) for z > 0, to move from

the second to the third line.
Computing directly that

m

2
(x1 − x∗,1)2 + 1

2 · σ 2 · (ν1 − x1)
2 = 1

2
· 1+m · σ 2

σ 2 ·
(
x1 − ν1 +m · σ 2 · x∗,1

1+m · σ 2

)2

+ m

2 · (1+m · σ 2)
· (ν1 − x∗,1)2,

one sees that

π ⊗ P
(
A×A�)≤ ( L

2π

)1/2
·
∫
x1≥ν1

exp
(
−1

2
· 1+m · σ 2

σ 2 ·
(
x1 − ν1 +m · σ 2 · x∗,1

1+m · σ 2

)2

× exp
(
− m

2 · (1+m · σ 2)
· (ν1 − x∗,1)2

))
dx1

=
(

L · σ 2

1+m · σ 2

)1/2
· exp
(
− m

2 · (1+m · σ 2)
· (ν1 − x∗,1)2

)

×
∫
x1≥ν1

N
(

dx1; ν1 +m · σ 2 · x∗,1
1+m · σ 2 ,

σ 2

1+m · σ 2

)

≤
(

L · σ 2

1+m · σ 2

)1/2
· 1 · 1

≤ L1/2 · σ.

Recalling that π(A)= π(A�)= 1
2 , the result follows. �

PROOF OF PROPOSITION 45. By m-strong convexity of the potential, it holds that

U(x + σ · z)−U(x)≥ 〈∇U(x), σ · z〉+ 1

2
·m · σ 2 · |z|2,
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and substituting this into (9) we obtain

α(x)≤
∫

N (dz;0, Id) ·min
{

1, exp
(
−〈∇U(x), σ · z〉− 1

2
·m · σ 2 · |z|2

)}
.

Applying the inequality min{1, c} ≤ c establishes that

α(x)≤
∫

N (dz;0, Id) · exp
(
−〈∇U(x), σ · z〉− 1

2
·m · σ 2 · |z|2

)
.

Straightforward computations show that

N (dz;0, Id) · exp
(
−〈∇U(x), σ · z〉− 1

2
·m · σ 2 · |z|2

)

= (1+m · σ 2)−d/2 exp
(

1

2
· σ

2 · |∇U(x)|2
1+m · σ 2

)

×N
(

dz;− σ

1+m · σ 2 · ∇U(x),
1

1+m · σ 2 · Id

)
,

which allows us to write

α(x)≤ (1+m · σ 2)−d/2 · exp
(

1

2
· σ 2

1+m · σ 2 ·
∣∣∇U(x)

∣∣2).
Now, for ρ > 0, define the set

Bρ =
{
x : σ 2

1+m · σ 2 ·
∣∣∇U(x)

∣∣2 ≤ ρ2
}
,

which for ρ small enough will have 0 < π(Bρ) < π(B�
ρ). It then follows that

�∗P ≤
π ⊗ P(Bρ ×B�

ρ)

π(Bρ)

=
∫

πBρ (dx) · P (x,B�
ρ

)

≤
∫

πBρ (dx) · P (x, {x}�)

=
∫

πBρ (dx) · α(x)

≤ (1+m · σ 2)−d/2 · exp
(

1

2
· ρ2
)
,

and taking an infimum as ρ→ 0+ gives that �P ≤ (1+m · σ 2)−d/2, as claimed.
For the subsequent remark, compute that

log�∗P ≤−
1

2
· d · log

(
1+m · σ 2)

=−1

2
· d · log

(
1+ m

L
· ς2

d2·β
)

=−1

2
· d1−2·β ·

(
d2·β · log

(
1+ m

L
· ς2

d2·β
))

=−1

2
· d1−2·β ·

(
m

L
· ς2 +O

(
d−2·β))
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=−1

2
· d1−2·β · m

L
· ς2 · (1+O

(
d−2·β))

≤−1

2
· m
L
· ς2 · d1−2·β · (1+ o(1)

)
.

Fixing c ∈ (0, 1
2 · m

L
· ς2), it holds for sufficiently large d that log�∗P ≤−c · d1−2·β . �

PROOF OF THEOREM 49. From Lemma 27, we can write Iπ (p)≥ Ĩπ (p) :=m1/2 · (ϕγ ◦
�−1

γ )(p), which admits the bounds

Ĩπ (p)≥ C� ·m1/2 · p ·
(

log
1

p

)1/2
, p ∈ (0,1/2],

and Ĩπ (1
4)=m1/2 ·Cγ . From Theorem 18,

n≥ 2+ 26 · ε−2 ·max
{

log
(

u0

4 · v−1∗

)
,0
}

+ 28 · ε−2 · δ−2 ·
∫ 1/4

max{min{2·u−1
0 ,1/4},v∗/2}

ξ

Ĩπ (ξ)2
dξ

+ 24 ·max
{

1,2−2 · δ−2 · Ĩπ

(
1

4

)−2}
· ε−2 · log

(
max
{

min{u0,8}
εMix

,1
})

is sufficient, where v∗ is defined in (8). Additionally, from Lemma 38, P is (| · |, α0 ·σ, 1
2 ·α0)-

close coupling. Substituting these values and using the lower bound on Ĩπ (p) to upper bound
the integrand and lower bound v∗ ≥ v◦ := min{1

2 ,2 · exp(−4 · C−2
� · σ−2 · α−2

0 · m−1)} it
suffices to take

n≥ 2+ 28 · α−2
0 ·max

{
log
(

u0

4 · v−1◦

)
,0
}

+ 210 ·C−2
� · α−4

0 · σ−2 ·m−1 ·
∫ 1/4

max{min{2·u−1
0 ,1/4},v◦/2}

1

ξ · log( 1
ξ
)

dξ

+ 24 ·max
{
1,2−2 ·C−2

γ · α−2
0 · σ−2 ·m−1} · α−2

0 · σ−2 · log
(

max
{

min{u0,8}
εMix

,1
})

,

and computing that

0 < a < b < 1 =⇒
∫ b

a

1

ξ · log( 1
ξ
)

dξ = log
(

log(1/a)

log(1/b)

)

provides the bound

n≥ 2+ 28 · α−2
0 ·max

{
log
(

u0

4 · v−1◦

)
,0
}

+ 210 ·C−2
� · α−4

0 · σ−2 ·m−1 · log
( log(min{max{1

2 · u0,4},2 · v−1◦ })
log 4

)

+ 24 ·max
{
1,2−2 ·C−2

γ · α−2
0 · σ−2 ·m−1} · α−2

0 · log
(

max
{

min{u0,8}
εMix

,1
})

.

By Corollary 40 and exp(ς2) · ς−2 ≥ exp(1), we obtain

max
{
1,2−2 ·C−2

γ · α−2
0 · σ−2 ·m−1}≤max

{
1,C−2

γ · exp
(
ς2) · ς−2 · κ · d}

= C−2
γ · exp

(
ς2) · ς−2 · κ · d,
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and simplifying the other terms provides the bound

n≥ 2+ 210 · exp
(
ς2) ·max

{
log
(

u0

4 · v−1◦

)
,0
}

+ 214 ·C−2
� · exp

(
2 · ς2) · ς−2 · κ · d · log

( log(min{max{1
2 · u0,4},2 · v−1◦ })
log 4

)
(13)

+ 26 ·C−2
γ · exp

(
2 · ς2) · ς−2 · κ · d · log

(
max
{

min{u0,8}
εMix

,1
})

,

where we may also bound

v−1◦ =max
{

2,
1

2
exp
(
4 ·C−2

� · σ−2 · α−2
0 ·m−1)}

≤max
{

2,
1

2
· exp
(
16 ·C−2

� · exp
(
ς2) · ς−2 · κ · d)}(14)

≤ 1

2
· exp
(
16 ·C−2

� · exp
(
ς2) · ς−2 · κ · d).

For the stated bound, since v−1◦ ≥ 2, we have u0

4·v−1◦
≤ u0, leading to the bound on the first

term. The second term follows from

log
( log(min{max{1

2 · u0,4},2 · v−1◦ })
log 4

)
≤ log
(

log(2 · v−1◦ )

log 4

)

≤ log
(
log
(
2 · v−1◦

))
≤ log
(
16 ·C−2

� · ς−2 · κ · d)+ ς2,

where we have used the bound on v−1◦ to arrive at the final inequality. �

PROOF OF LEMMA 56. Compute directly that

KL
(
Q(x, ·),Q(y, ·))= 1

2
· ρ

2

η2 · |x − y|2C−1 .

By Pinsker’s inequality, it thus holds that

∥∥Q(x, ·)−Q(y, ·)∥∥TV ≤
1

2
· ρ
η
· |x − y|C−1 . �

PROOF OF THEOREM 59. The proof structure broadly follows that of Theorem 49; cer-
tain details which are omitted here are spelt out more clearly in that proof.

By Lemma 55, π admits the regular, concave | · |C−1 -isoperimetric minorant ϕγ ◦ �−1
γ ,

and by Lemma 57, P satisfies a close coupling inequality with δ = α0 · η
ρ

, ε = 1
2 · α0. By

Theorem 18, it suffices to take

n≥ 2+ 26 · ε−2 ·max
{

log
(

u0

4 · v−1◦

)
,0
}

+ 28 · ε−2 · δ−2 ·
∫ 1/4

max{min{2·u−1
0 ,1/4},v◦/2}

ξ

Ĩπ (ξ)2
dξ

+ 24 ·max
{

1,2−2 · δ−2 · Ĩπ

(
1

4

)−2}
· ε−2 · log

(
max
{

min{u0,8}
εMix

,1
})

.
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Recalling that ϕγ ◦�−1
γ ≥ C� · p · (log 1

p
)1/2 for p ∈ [0, 1

2 ], we thus simplify to

n≥ 2+ 28 · α−2
0 ·max

{
log
(

u0

4 · v−1◦

)
,0
}

+ 210 ·C−2
� · α−4

0 · ρ
2

η2 ·
∫ 1/4

max{min{2·u−1
0 ,1/4},v◦/2}

1

ξ · log( 1
ξ
)

dξ

+ 26 ·max
{

1,2−2 ·C−2
γ · α−2

0 · ρ
2

η2

}
· α−2

0 · log
(

max
{

min{u0,8}
εMix

,1
})

and repeating earlier calculations with the inner integral gives the bound

n≥ 2+ 28 · α−2
0 ·max

{
log
(

u0

4 · v−1◦

)
,0
}

+ 210 ·C−2
� · α−4

0 · ρ
2

η2 · log
( log(min{max{1

2 · u0,4},2 · v−1◦ })
log 4

)

+ 26 ·max
{

1,2−2 ·C−2
γ · α−2

0 · ρ
2

η2

}
· α−2

0 · log
(

max
{

min{u0,8}
εMix

,1
})

,

where v◦ :=min{1
2 ,2 · exp(−4 ·C−2

� · α−2
0 · ρ2

η2 )}.
We observe that

inf
ς∈(0,L1/2·Tr(C)1/2)

exp
(
ς2) · ς−2 · κ̃ = inf

η∈(0,1)
exp
(
η2 · κ̃) · η−2

=
{

exp(κ̃), κ̃ ≤ 1,

κ̃ · exp(1), κ̃ > 1,

≥ 1.

Using Lemma 58, the bound above and ρ2 ≤ 1, we obtain

max
{

1,2−2 ·C−2
γ · α−2

0 · ρ
2

η2

}
≤max

{
1,C−2

γ · exp
(
ς2) · ς−2 · κ̃}

= C−2
γ · exp

(
ς2) · ς−2 · κ̃,

providing the bound

n≥ 2+ 210 · exp
(
ς2) ·max

{
log
(

u0

4 · v−1◦

)
,0
}

+ 214 ·C−2
� · exp

(
2 · ς2) · ς−2 · κ̃ · log

( log(min{max{1
2 · u0,4},2 · v−1◦ })
log 4

)

+ 26 ·C−2
γ · exp

(
2 · ς2) · ς−2 · κ̃ · log

(
max
{

min{u0,8}
εMix

,1
})

,

where

v−1◦ =max
{

2,
1

2
exp
(

4 ·C−2
� · σ−2 · α−2

0 · ρ
2

η2

)}

≤max
{

2,
1

2
· exp
(
16 ·C−2

� · exp
(
ς2) · ς−2 · κ̃)}

≤ 1

2
· exp
(
16 ·C−2

� · exp
(
ς2) · ς−2 · κ̃).
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The stated bound is obtained by the following observations. Since v−1◦ ≥ 2, u0

4·v−1◦
≤ u0, lead-

ing to the bound on the first term. The bound on the second term follows from

log
( log(min{max{1

2 · u0,4},2 · v−1◦ })
log 4

)
≤ log
(

log(2 · v−1◦ )

log 4

)

≤ log
(
log
(
2 · v−1◦

))
≤ log
(
16 ·C−2

� · ς−2 · κ̃)+ ς2,

where we have used the bound on v−1◦ to arrive at the final inequality. �

PROPOSITION 62. Suppose that the π -invariant Markov kernel P satisfies the optimized
spectral profile inequality

E(P, g)≥Varπ(g) · F
(

π(g)2

Varπ(g)

)

for all nonnegative, nonconstant π -a.s. g ∈ L2(π), where F is positive, decreasing and
lim supv→0+ F(v) > 0 (and may be infinite). Then P also satisfies a super-Poincaré inequal-
ity of the form

Varπ(f )≤ s · E(P,f )+ β(s) · π(|f |)2,
where β is positive, decreasing, and can be written explicitly.

PROOF. For w ≥ 0, define

F ∗(w)= inf
v≥0

{
F(v)+w · v}.

Note that F ∗ is positive, increasing, and id/F ∗ is increasing. By our assumption that
lim supv→0+ F(v) > 0, it also holds for w > 0 that F ∗(w) > 0. One can then write

F(v)≥ sup
w≥0

{
F ∗(w)−w · v},

and hence for any w > 0 and nonnegative, nonconstant g ∈ L2(π) that

E(P, g)≥Varπ(g) ·
{
F ∗(w)−w · π(g)2

Varπ(g)

}

=⇒ Varπ(g)≤ 1

F ∗(w)
· E(P, g)+ w

F ∗(w)
· π(g)2.

Writing s = 1
F ∗(w)

and β0 = (Id/F ∗) ◦ (1/F ∗) (which is decreasing), we see for nonnegative

g ∈ L2(π) that

Varπ(g)≤ s · E(P, g)+ β0(s) · π(g)2.

Now, let f ∈ L2(π) and write f± =max(±f,0)≥ 0, so that

Varπ(f±)≤ s · E(P,f±)+ β0(s) · π(f±)2.

Standard calculations give that Varπ(f ) ≤ 2 · (Varπ(f+) + Varπ(f−)), E(P,f+) + E(P,

f−)≤ E(P,f ) (Goel, Montenegro and Tetali (2006), Lemma 2.3), and π(f+)2 + π(f−)2 ≤
π(|f |)2. Assembling these inequalities yields that

Varπ(f )≤ 2 · (Varπ(f+)+Varπ(f−)
)

≤ 2 · s · (E(P,f+)+ E(P,f−)
)+ 2 · β0(s) · (π(f+)2 + π(f−)2)

≤ 2 · s · E(P,f )+ 2 · β0(s) · π(|f |)2,
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that is, that

Varπ(f )≤ s · E(P,f )+ β(s) · π(|f |)2,
where β : s �→ 2 · β0(

1
2 · s). The result follows. �

APPENDIX C: DIFFERENT PROPOSAL DISTRIBUTIONS FOR RWM

For simplicity, the analysis of the RWM in Sections 4–5 involved specifically Gaussian
proposal distributions. We extend the results here to a wide class of proposal distributions
with independent noise increments for each of the d components. That is, we define

Q(x,A)=
∫

1A(x + σ · z)q⊗d(dz), x ∈ E,A ∈ E ,

where q is a probability measure on (R,B(R)) that is symmetric, that is, q(A)= q(−A) for
all A ∈ B(R) where B(R) is the Borel σ -algebra of R. We define for t ∈ R, qt to be the
distribution of Z + t where Z ∼ q . We define the squared Hellinger distance between P and
Q as

dH(P,Q)2 =
∫ ((dP

dλ
(x)

)1/2
−
(

dQ

dλ
(x)

)1/2)2
λ(dx),

where λ is any common dominating reference measure. This is a suitable metric to use be-
cause of its tensorization properties and because by Le Cam’s inequalities (see, e.g., Tsybakov
(2009), Section 2.4), it holds that

‖P −Q‖TV ∈
[

1

2
· dH(P,Q)2, dH(P,Q)

]
.

Hence, in order to control ‖P − Q‖TV ∈ �(1), it is necessary and sufficient to control
dH(P,Q) ∈�(1).

PROPOSITION 63. Let U be a potential such that

(15) U(x + h)−U(x)− 〈∇U(x),h
〉≤ d∑

i=1

ψ
(|hi |),

for some ψ : R+ → R+ which is nondecreasing and satisfies ψ(0)= 0. Assume there exists
LH > 0 such that

dH(q, qt )
2 ≤ 1

2
·LH · t2 for t ∈R.

Assume also for σ > 0 that∫
R

q(dz1) · exp
(−ψ
(
σ · |z1|))≥ 1− ξ(σ )

for some ξ :R+ →R+ which is continuous, nondecreasing and satisfies ξ(0)= 0. Let η > 0
and define Pη to be the RWM kernel with proposal scaling σ satisfying ξ(σ ) = d−1 · η. It
then holds that

1. Pη has minimal acceptance rate α0 ≥ 1
2 · (1− η

d
)d ≥ 1

2 · exp(−η · d
d−η

).

2. The kernel Pη is (| · |, σ · (2 ·LH)−1/2 · α0,
1
2 · α0)-close coupling.
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PROOF. For the first part, following the same steps in the proof of Lemma 39, we have

α0 ≥ 1

2

∫
q⊗d(dz) · exp

(
−

d∑
i=1

ψ
(
σ · |zi |)

)

= 1

2

{∫
q(dz1) · exp

(−ψ
(
σ · |z1|))

}d
,

from which the result follows. For the second part, we may write

∥∥Q(x, ·)−Q(y, ·)∥∥TV =
∥∥∥∥∥

d⊗
i=1

qxi−yi
σ

−
d⊗

i=1

q

∥∥∥∥∥
TV

.

Moreover, we have in general that

1− 1

2
· dH

(
d⊗

i=1

Pi,

d⊗
i=1

Qi

)2

=
d∏

i=1

{
1− 1

2
· dH(Pi,Qi)

2
}

≥ 1−
d∑

i=1

1

2
· dH(Pi,Qi)

2.

We then see that

1

2
·
∥∥∥∥∥

d⊗
i=1

qxi−yi
σ

−
d⊗

i=1

q

∥∥∥∥∥
2

TV

≤
d∑

i=1

1

2
· dH(qxi−yi

σ

, q)2

≤
d∑

i=1

LH · |xi − yi |2
4 · σ 2

= LH · |x − y|2
4 · σ 2 ,

so that ‖Q(x, ·) −Q(y, ·)‖TV ≤ (LH
2 )1/2 · |x−y|

σ
in general. In particular, taking d(x, y) =

|x − y| ≤ σ · (2 · LH)−1/2 · α0, we obtain that ‖Q(x, ·)−Q(y, ·)‖TV ≤ 1
2α0. We may then

conclude by Lemma 19. �

The conditions may be verified in various settings with specific choices of q . If ψ(x)= xα

for some α ∈ [0,2] and q has finite αth moment then a bound on α0 is straightforward: if
σ = ς · d−1/α then by Jensen’s inequality,

α0 ≥ 1

2
· exp
(
−d

∫
q(dz) · σα|z|α

)
= 1

2
· exp
(
−ςα
∫

q(dz)|z|α
)
.

If q has only a smaller moment, then the next Lemma shows that it is still possible to
obtain a bound. For example, if α = 2 and q has a finite second moment, we obtain the same
scaling ξ(σ ) ∼ σ 2 as for Gaussian proposals. If q has fewer moments, or U is rougher, the
scaling of σ with dimension is more severe. For example, if q is Cauchy and α = 2 then one
can only obtain s arbitrarily close to 1 in Lemma 64, and so a scaling of ξ(σ ) ∼ σ which
leads to scaling σ ∼ 1/d . In fact, the calculations for the Cauchy can be done exactly, such
that we have ∫

q(dz) · exp
(−σ 2 · z2)= exp

(
σ 2) · {1− 2

π

∫ σ

0
exp
(−t2)dt

}
,

which gives the same scaling.
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LEMMA 64. Suppose ψ(x) = xα for some α ∈ [0,2], and assume q has finite r th mo-
ment for some r > 0. Then

ξ(σ )≤ σ s ·Eq

[|Z|s],
where s =min{α, r}.

PROOF. Observe that exp(−t)≥ 1− t ≥ 1− tβ for any β ∈ [0,1]. Then∫
q(dz) · exp

(−ψ
(
σ · |z|))≥ 1−

∫
q(dz) ·ψ(σ · |z|)β

= 1− σαβ
Eq

[|Z|αβ],
for β ∈ [0,1]. We conclude by taking β =min{r/α,1}. �

One approach to verifying the Hellinger condition is to follow asymptotic statistical theory
using a nonasymptotic variant of differentiability in quadratic mean (van der Vaart (1998),
Section 7.2). In particular, we will assume that the proposal q satisfies

(16)
∫ (

q(x + t)1/2 − q(x)1/2 ·
(

1+ 1

2
· s(x) · t

))2
≤ ϕ
(|t |) as t → 0,

for some s which is square-integrable under q and some ϕ which vanishes at least quadrati-
cally around 0. The triangle inequality then yields

dH(q, qt )≤ 1

2
· |s|L2(q) · |t | + ϕ

(|t |)1/2 ∈�(t),

as t → 0+; boundedness of the Hellinger distance allows one to conclude the existence of a
suitable LH . Such an estimate should thus hold for all proposals corresponding to “regular”
statistical (location) models; see van der Vaart (1998), Example 7.8, for further discussion.
Alternatively, if logq is differentiable then it may be convenient to bound dH(q, qt ) using the
KL divergence. For example, if logq is Lq -smooth and one defines K(t) = KL(q, qt ), we
have K(0)=K ′(0)= 0 and∣∣K ′(s)

∣∣= ∣∣∣∣
∫

q(x)
{
(logq)′(x − s)− (logq)′(x)

}
dx

∣∣∣∣≤ Lq |s|,

from which we may deduce that dH(q, qt )
2 ≤K(t)= ∫ t0 K ′(s)dFs ≤ 1

2Lqt2.
Finally, the there remains an additional subtlety concerning the positivity of the RWM

Markov operator P , which we use to ensure that the spectral gap and right spectral gap
coincide. The approach of Baxendale (2005) that we have used for normal increments ap-
plies quite generally to increment distributions which are decomposable in a particular sense,
but does not hold in complete generality. Hence one may require alternative arguments to
bound the left spectral gap or consider instead the Markov chain associated with the operator
Plazy = 1

2(P + Id), which is necessarily positive. In particular, translating our main argu-
ments appropriately would then establish that the same quantitative results (in terms of how
the mixing time scales with d, κ) hold for a lazy chain, up to some absolute constant factors.
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