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Abstract: This paper presents a Bayesian inversion approach to identify earth pressures 10 
on in-service underground structures based on structural deformations. Ill-conditioning 11 
and non-uniqueness of solutions are major issues for load inversion problems. 12 
Traditional approaches are mostly based on an optimization framework where a smooth 13 
solution is uniquely determined using regularization techniques. However, these 14 
approaches require tuning of regularization factors that may be subjective and difficult 15 
to implement for pressure inversion on in-service underground structures. By contrast, 16 
the presented approach is based on a Bayesian framework. Instead of regularization 17 
techniques and corresponding tuning procedure, only physically plausible bounds are 18 
required for specifying constraints. The complete posterior distribution of feasible 19 
solutions is obtained based on Bayes' rules. By inferring the potential pressures with 20 
the complete posterior distribution, a natural regularization advantage can be shown. 21 
Specifically, this advantage is demonstrated in detail by a series of comparative tests: 22 
i) the Bayesian posterior mean exhibits an inherent quality to smooth out ill-conditioned 23 
features of inversion solutions; ii) satisfactory inference of the pressures can be made 24 
even in the presence of non-uniqueness. These properties are valuable when observed 25 
data is noisy or limited. A recorded field example is also presented to show 26 
effectiveness of this approach in practical engineering. Finally, deficiencies and 27 
potential extensions are discussed. 28 
 29 
Keywords: Earth pressures; Underground structures; Inversion problem; Load 30 
identification; Bayesian inference  31 
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1 Introduction 32 

Due to the complexity of the urban underground environment, earth pressures on 33 
many in-service underground structures may exceed values expected in the design stage. 34 
As a result, excessive deformation and subsequent structural defects can occur, posing 35 
a threat to safety. For example, in soft soil areas, a number of shield tunnel structures 36 
were disturbed by nearby construction activities. The additional load from the 37 
disturbances has resulted in gross distortion of the tunnel linings [1−2], leading to 38 
severe leakage and segment cracks. 39 

Identification of current earth pressures is crucial for health monitoring and 40 
performance prediction of such structures. For example, digital modeling, internal force 41 
estimation, or residual bearing capacity evaluation of the in-service structures requires 42 
a clear understanding of the current load state. However, direct measurement of the 43 
pressures by measuring devices can be rather difficult due to economic, technical, and 44 
logistical limitations [3−4]. By contrast, inversion of the load pressures based on easily 45 
observed structural responses, say deformation [5], is desirable. 46 

Inversion of the design load on well-performing underground structures is 47 
straightforward [6]. The distribution of pressures can be assumed according to a design 48 
mode, see an example in Fig. 1(a). Consequently, the unknown parameters are restricted 49 
to specific unknowns on the load mode, e.g., vector x in Fig. 1(a), where x=(x1,x2,x3). 50 
This parameterization enables the unknown pressures to be expressed as specific 51 
parameters on a particular load mode. By searching within this restricted parameter 52 
space, a good solution can be uniquely determined by minimizing the loss function 53 
between the observed structural response and that predicted by a forward model: 54 

,       (1) 55 

where xd is the inversion result; d is the observed structural responses, say deformation; 56 
g(x) is called the forward model that maps any load parameters x into a predicted 57 
structural response; h(x) is the potential constraints imposed on the parameters.  58 

 59 
Fig. 1. Illustration example of the parameterization methods: (a) parameterization by assuming a 60 

design mode, e.g., according to Rankine’s theory; (b) parameterization with an interpolation 61 
function   62 

However, for in-service structures, the current load states may have already 63 
exceeded expected design mode and may be unevenly distributed [7−8]. In this case, 64 
Gioda and Jurina [9] used an interpolation function to approximate the unknown 65 
pressures. The function is the product of an interpolating matrix and unknown 66 
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coefficients. In this way, the unevenly distributed pressures have been parameterized 67 
by a set of unknown coefficients, e.g., x=(x1,…,x12) in Fig. 1(b).  68 

Gioda and Jurina’s method [9] abandons design mode assumption on the pressures, 69 
which relaxes the inversion parameter space. However, without a strong restriction on 70 
the inversion parameter space (such as the design mode assumption), two significant 71 
issues can be introduced into the inversion problem, i.e., non-uniqueness and ill-72 
conditioning [10−12]. That is, vastly different load states can give rise to predicted data 73 
that fit equally well with the observation data (due to an underdetermined mapping from 74 
d to x), and a small error in the observed data may cause a large bias in the inversion 75 
result (due to the large condition number of the mapping from d to x). Liu et al. [13] 76 
and Liu et al. [14] have observed this, and employed regularization techniques to 77 
impose regularized constraints on the parameter space to penalize undesired 78 
components, resulting in a smooth and unique solution. Among the regularization 79 
techniques, Tikhonov regularization has become the most widespread [15], which 80 
introduces a regularization term into Eq. (1): 81 

,      (2) 82 

where γr is called the regularization factor, L is the s-th order derivative operator of x 83 
and s is usually chosen as 0, 1, or 2 [14]. The regularization term constrains the norm 84 
of Lx to be small. This makes Eq. (2) favor solutions that are relatively flat or smooth, 85 
thereby dealing with ill-conditioning. However, tuning suitable values of γr to obtain a 86 
satisfactory solution can be challenging [10, 16], relying heavily on the researchers’ 87 
experience. It is also worth noting that both Eq. (1) and Eq. (2) are based on a 88 
deterministic framework to determine a unique solution using optimization algorithms. 89 
To the authors’ knowledge, the non-uniqueness of solutions has hardly been discussed 90 
in the context of load inversion problems for underground structures.  91 

Bayesian inference casts the inversion into statistical framework, where the output 92 
is the posterior distribution of the parameters that quantifies the ambiguity of all 93 
potential feasible solutions. Consequently, Bayesian inference have been used for 94 
uncertainty quantification in various fields such as soil parameter estimation [17−19] 95 
and defects identification [20] in geotechnical engineering. However, it has not been 96 
introduced to load inversion problems for underground structures. Although similar 97 
research has been conducted in identifying dynamic point loads on mechanical systems, 98 
these studies typically assume a Gaussian prior for the unknown parameters [21−23]. 99 
Under this assumption, the maximum a posteriori (MAP) solution in Bayesian 100 
approach is equivalent to the Tikhonov-regularized solution (i.e., Eq. 2) [10, 23], which 101 
enables the handling of ill-conditioning. Nevertheless, applying this assumption to load 102 
parameters of in-service underground structures can be very difficult and subject, as 103 
their values may already exceed expectations in the design stage. Furthermore, to avoid 104 
heavy computations, a MAP solution is typically chosen as a final result in Bayesian 105 
methods in this context [24]. To the best of the authors’ knowledge, advantages of 106 
making statistical inference with the complete posterior distribution have not been 107 
shown yet. 108 
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In this paper, a Bayesian-based inversion approach for pressure identification on 109 
in-service underground structures is presented that does not require regularization 110 
techniques, Gaussian priors, or a corresponding tuning procedure. Based on an efficient 111 
Markov Chain Monte Carlo (MCMC) algorithm, the complete posterior distribution of 112 
inversion pressures is obtained. This approach encourages one to make inference with 113 
the complete posterior distribution whereby a natural regularization can be shown. 114 
Section 2 introduces this Bayesian load inversion approach in detail; Sections 3 presents 115 
its natural advantages in dealing with ill-conditioning and non-uniqueness; In Section 116 
4, a recorded field example is carried out to show its effectiveness in practical 117 
engineering. Finally, deficiencies and potential extensions are discussed. 118 

2 The Bayesian load inversion approach 119 
2.1 Parameterization 120 

Most mechanical problems of underground structures can be simplified as a plane 121 
strain problem, which is mainly the case discussed in this paper. Use z to represent a 122 
generalized coordinate on a structure, such as depth on a diaphragm wall or polar angle 123 
on a shield tunnel ring. The actual pressure field Q(z) in the structural domain can be 124 
approximated as an unknown function q(z). To avoid imposing erroneous constraints 125 
on the unknown pressures, Gioda and Jurina’s method [9] is employed, which entails 126 
determining q(z) as the interpolation of a series of unknown load parameters 127 
x=(x1,x2,…,xn)T located at control nodes z=(z1,z2,…,zn)T (Eq. 3, illustration example 128 
seen in Fig. 2(a)). Once the interpolation number n and nodes location z have been pre-129 
defined, approximated pressure field q(z) will be uniquely determined by x. As a result, 130 
the inversion of the pressures has been transferred into the inversion of the intermediate 131 
parameters x. 132 

,         (3) 133 

where, Iz(z) is the interpolating vector that can be varied according to the interpolation 134 
type, but the linear interpolation is often preferred by the researchers due to its 135 
simplicity and flexibility [9, 13−14] (its interpolating vector is presented in Appendix 136 
A).  137 

 138 
Fig. 2. Illustration example of the interpolation parameterization: (a) 4 parameters; (b) 12 139 

parameters; (c) 22 parameters 140 

The approximation capacity of q, with parameters x, depends on the number n and 141 
locations z of the nodes. When no judgement can be made on the load distribution 142 
beforehand, it is recommended to place the nodes evenly on the structure. As for n, 143 
shown in Fig. 2(a)−(c), the more parameters (the denser nodes), the stronger the 144 
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approximation capacity. As long as there are enough parameters, any pressure field can 145 
be approximated well. On the other hand, it is statistically and computationally more 146 
efficient to use less parameters. Although there is currently no widely accepted 147 
guideline for choosing node density in previous literatures, this study provides an 148 
example to illustrate a practical method for selecting an appropriate node density in 149 
section 4. 150 

2.2 Bayesian framework for the load inversion problem  151 

The unknown pressure field q has been parameterized by the load parameters x. In 152 
a Bayesian inversion, inferences about the parameters are made using conditional 153 
probability given observed data according to Bayes’ rule: 154 

,         (4) 155 

where p(x|d) is the probability density of parameters x given the field data d (the 156 
observed deformations); p(x) is the prior density of x; p(d|x) is the likelihood function; 157 
p(d), called “marginal likelihood”, is a normalizing factor which makes p(x|d) integrate 158 
to one, and it can typically be ignored in the numerical estimation process of the 159 
posterior distribution. 160 

2.2.1 The prior distribution 161 
The prior distribution reflects one’s prejudgment on the load parameters before 162 

obtaining data. Priors can have a strong influence on the posterior in a limited data 163 
setting [21, 25]. Improper prior can cause problems in practice, e.g., there is no 164 
guarantee that the posterior is even well-defined. Accordingly, it is preferable to ensure 165 
that the prior permits solutions that are plausible while allowing the data to strongly 166 
influence the posterior. 167 

The load parameters are assumed to be uncorrelated before obtaining the data. 168 
Accordingly, x is considered as an independent random vector, and the prior distribution 169 
can be written as: 170 

.       (5) 171 

As for p(xi) (i=1,…,n), three typical priors are summarized and discussed as follows: 172 
i) Completely flat prior: little judgement about the parameters can be made before 173 

inversion. In this case, the prior density of the parameters can be set to be completely 174 
flat: p(xi)=1(i=1,…,n). Although such an improper prior [26] is not necessarily 175 
uninformative, it is objective, to some degree, in engineering practice when no 176 
information is available. 177 

ii) Bounded uniform prior: generally, it is reasonable to set bounds for the 178 
parameters according to engineering judgment [9]. The bounds can help filter out some 179 
obviously unreasonable results while little judgement can be made on any values within 180 
the bounds. In this situation, the prior distribution of the parameters can be set as a 181 
uniform distribution within a physically plausible bound, e.g., xi ~ Uniform (bmin, bmax) 182 
(i=1,…,n). Such a prior is informative due to constraints from the bounds. In general, 183 
it is not difficult to determine a physically plausible bound for the soil-structure 184 
interaction pressures based on geotechnical engineering judgements. 185 
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iii) Gaussian prior: the prior distribution is centred at a given value with a variance. 186 
By tuning a suitable value of these parameters, the posterior distribution can be 187 
regularized and then a smooth solution can be uniquely determined [22]. Such a prior 188 
is clearly fairly informative and will strongly influence the posterior especially when 189 
the variance is tuned to be small. However, when no valid information is available, the 190 
parameters may be chosen improperly, whereby unacceptable bias may be introduced 191 
to the results.  192 

For the earth pressures on in-service underground structures, it seems relatively 193 
difficult to require corresponding centre and variance information in a Gaussian 194 
distribution beforehand. By comparison, a flat prior may be more reasonable. Noted 195 
that a physically plausible bound can also be available in practice for necessary 196 
constraints. For example, a lower bound of the soil-structure interaction pressure can 197 
be set as 0 since almost no traction can be exerted by the soil. Thus, a bounded uniform 198 
prior is recommended in this approach. The bounds can be determined on a case-by-199 
case basis according to reasonable geotechnical engineering judgements. However, it 200 
can be possible in some cases that one’s engineering judgements on the bounds can be 201 
extremely weak. In this regard, determination of the bounds will be discussed in detail 202 
in section 4.3. 203 

2.2.2 The likelihood function 204 
The likelihood function measures the fit between observed deformation data and 205 

that predicted with a particular set of load parameter x, which is determined by the 206 
magnitude of error vector: 207 

,         (6) 208 
where d is the observed deformation data; g(x) is the forward modelling function which 209 
returns a vector of predicted deformation data under the specific pressure field q 210 
(determined by the load parameters x, Eq. 3). The error vector e arises from inaccuracies 211 
in forward modelling (model error) and measurement error in observed deformations. 212 
In many cases, it is reasonable to assume that the model error is negligible when 213 
compared to measurement error (this will be discussed further in section 4.4). Given 214 
this assumption, as supported by the Central Limit Theorem, a zero-mean Gaussian 215 
distribution is typically assumed for the error distribution. The likelihood function is 216 
then 217 

,   (7) 218 

where H is the length of vector e,  is the estimated standard deviation of the data 219 
errors.  can be estimated as an unknown parameter too in an advanced hierarchical 220 
Bayesian framework [21]. However, it is beyond the scope of this paper. Since 221 
measurement instruments of the deformations can be generally known in advance, 222 
is determined according to the precision of measurement instruments in this paper. 223 

2.2.3 The forward model 224 
A forward model g(x) is required to compute the predicted deformation data under 225 

any given pressure field q (i.e., Iz(z)x, Eq. 3). As for the underground structures, it is 226 
commonly called load-structure model. For the convenience of solving the mostly 227 
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higher order partial differential governing functions, finite element method (FEM) can 228 
be adopted: 229 

,        (8) 230 

where the structure is discretized into a series of elements and K is the global stiffness 231 
matrix; f is a vector-valued function where f (Iz(z)x) is the equivalent nodal forces that 232 
are equivalent to the distributed pressures q (i.e., Iz(z)x) with the transformation rules 233 
of virtual work. Here, for a better illustration, derivation of K and f for the most 234 
commonly used “Beam on elastic foundation” model, is presented in Appendix B. For 235 
a linear elastic case, the predicted deformation data can be computed directly with Eq. 236 
(8) while an iterative procedure will be required when considering the non-linear 237 
behaviour of the mechanical system, such as a Newton-Raphson Method. 238 

2.2.4 Solution of Bayesian inversion 239 
2.2.4.1 Maximum likelihood estimation or posterior means? 240 

With a deterministic approach, it is reasonable to extract a solution uniquely from 241 
the posterior density, i.e., according to the prior and likelihood, the MAP estimate: 242 

,     (9) 243 

which can be obtained analytically. Table 1 presents the MAP solution of Bayesian 244 
inversion under three typical types prior information. The optimal solution in 245 
deterministic inversion under the same condition are also given in this Table.  246 

It is found that when taking a completely flat prior, p(xi)=1(i=1,…,n), the MAP in 247 
Bayesian inversion is equivalent to the optimal solution in an unconstrained 248 
deterministic inversion; Certainly, when taking a bounded uniform prior, i.e., xi 249 
~  Uniform (bmin, bmax) (i=1,…,n), the MAP is also equivalent to the optimal solution in 250 
a deterministic inversion under the equivalent constraints bmin<xi<bmax (i=1,…,n); 251 
When taking a zero-mean Gaussian prior, i.e., xi ~ N (0, σp2) (i=1,…,n), the MAP is 252 
equivalent to the optimal solution in a deterministic inversion using Tikhonov 253 
regularization when L in Eq. (2) is determined as the 0-th order derivative operator. 254 

It is known that ill-conditioning is a major issue in deterministic inversion. Thus, 255 
the same can be true for the MAP solution in Bayesian inversion. Although 256 
regularization techniques can be introduced to make the solution more well-behaved, 257 
this may introduce unacceptable bias. 258 

Instead of choosing the MAP solution or the optimal solution in deterministic 259 
inversion, it is recommended to make an inference based on the entire posterior 260 
distribution. A natural regularization of Bayesian inversion (without regularization 261 
techniques) can be shown when inferring with the ensemble posterior solutions. 262 
Typically, the posterior mean/expectation of the parameters x or pressure field q at a 263 
given z are mathematically equivalent to: 264 

,       (10) 265 

.       (11) 266 

Posterior means minimize expected squared loss, where the expectation is taken with 267 
respect to the posterior [26]. In a qualitive perspective, MAP is a solution that best fits 268 
the observation data and the noise in data as well. In addition to MAP, quantities of 269 
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“less-fitted” ones that are insensitive to data noise are also considered as feasible 270 
solutions with corresponding probabilities. By averaging all the feasible solutions 271 
appropriately to obtain a posterior mean, the high-frequency features of any individual 272 
solution caused by observation errors can be flattened. This is described as the inherent 273 
smoothing quality of Bayesian inference [16]. The natural regularization will be shown 274 
directly in the following cases. 275 

2.2.4.2 Estimation of the posterior distribution 276 
As mentioned above, a Bayesian approach requires estimation of the posterior 277 

distribution. However, when the prior and posterior are not of the same distribution 278 
family, analytical solution of Eq. (4) can rarely be achieved. Alternatively, Markov 279 
Chain Monte Carlo (MCMC) is an effective numerical algorithm for estimating 280 
posterior distributions. The basic idea of MCMC is demonstrated as: ⅰ) Construct a 281 
transition kernel P(t→t+1) based on Detailed Balance [27]; ⅱ) Sampling iteratively with 282 
P(t→t+1) to construct an ergodic Markov Chain whose stationary distribution is the 283 
posterior distribution. 284 

Without constraints from a strong prior distribution, many iterations will be 285 
required for the chain to achieve convergence. Especially when computation of the 286 
forward model is computationally intensive, estimation of the posterior distribution can 287 
be a daunting task [28]. Thus, a more efficient MCMC algorithm called Differential 288 
Evolution Markov Chain (DE-MC) [29] is introduced to increase sampling efficiency. 289 
In DE-MC, N parallel “chains” are run simultaneously and “learn” from each other to 290 
tune the scale and orientation of the transition kernel adaptively, which shows good 291 
efficiency for approximating the posterior distribution. The transition kernel of DE-MC 292 
can be built according to: 293 

i) generate a next proposal of the ith chain (i=1,…,N) after iteration step t based 294 
on Differential Evolution: 295 

,       (12) 296 

where λ is the jump rate; ζn ~ Nn (0,c) is drawn from a normal distribution with a small 297 
standard deviation to ensure ergodicity; a and b are integer values drawn without 298 
replacement from set {1,…,i-1,i+1,…,N}. 299 

ii) accept the proposal  with probability pacc (xti → xpi); and reject 300 
otherwise: , where 301 

,      (13) 302 

where Eq.(4) is adopted to estimate the ratio between p(xip|d) and p(xit|d). Accordingly, 303 
with the proposal function (Eq. 12) and accept ratio (Eq. 13), the Markov chain has a 304 
stationary distribution in which each of the N components are independent and 305 
distributed according to the posterior. After convergence of the chains, a set of posterior 306 
samples {xs,s=1,…,S}, extracted from all the components, can be used to estimate the 307 
posterior distribution: 308 

,       (14) 309 

where, δ(∙) is the Dirac delta function. And the density of q(z) can also be estimated as: 310 
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.     (15) 311 

Hence, Eqs. (10) and (11) reduce to: 312 

        (16) 313 

       (17) 314 

Convergence of the Markov Chains can be monitored by the scale-reduction factor 315 
proposed by Gelman and Rubin [30]: 316 

        (18) 317 

where, ti is the number of iterations in the ith chain (i=1,…,N); N is the number of 318 
chains; B is the variance between chain means; W is the average of within-chain 319 
variances; and it is recommended that a value of  less than 1.2 indicates 320 
convergence of the chain. 321 

3 Advantages in dealing with non-uniqueness and ill-conditioning 322 

A Numerical example was presented to demonstrate how to perform this approach 323 
on an underground structure. Most importantly, a series of comparative tests were 324 
carried out to illustrate the natural regularized property of this approach. 325 

3.1 Preliminaries  326 

For convenience of discussion, a linear elastic case is assumed here. A diaphragm 327 
wall bended towards a pit as a result of the active earth pressures behind it. The structure 328 
and soil properties are summarized in Fig. 3(a). The physical process can be simplified 329 
as beam, on elastic foundation, loaded by the pressures. Specifically, flexural rigidity 330 
of the wall EI is 2.5×106 kN•m2, the foundation stiffness increases linearly with depth 331 
with a scaling factor m2=5×103 kN/m4. The “actual” pressure field was estimated 332 
according to Rankine’s theory (Fig. 3(b)). The pressures, combined with the forward 333 
model (Eq. 8), generated a set of synthetic deformation data d=(d1,…,d41) (measuring 334 
every 0.5 m on the wall, seen in Fig. 3(c)). Then, the objective is inversion of the actual 335 
pressures (assumed unknown now) based on the synthetic data (in some cases, 336 
contaminated by a set of random noise ε to simulate the observation errors). 337 
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  338 
Fig. 3. The numerical example: (a) a diaphragm wall bends towards a pit; (b) assumed actual 339 
earth pressures acting on the wall; (c) synthetic deflection data generated by the assumed 340 
pressures; (d) parameterization with 22 unknown load parameters. ((Note: γ=unit weight; 341 

φ=friction angle; c=cohesion; m=scaling factor of the foundation stiffness; EI=flexural rigidity) 342 

Firstly, unknown parameters were taken with a dense grid (1 m apart) in the 343 
structural domain. Since it is generally known a priori that an abrupt change of active 344 
earth pressures can occur on the soil interface (depth = −10 m), an additional unknown 345 
factor was added at the interface. Thus, 22 unknown parameters x=(x1,…,x22) were set, 346 
shown in Fig. 3(d).  347 

As for the prior distribution of these parameters, from the engineering judgement, 348 
lateral active earth pressures on the wall must be positive and within a limited bound, 349 
say the self-weight stress of soil at the wall bottom γ1h1+γ2h2≈400 kPa. Thus, a bounded 350 
uniform prior was set as xi ~ Uniform (0,400) (i=1,…,22). 351 

For the likelihood function, assume that precision of measurement was known in 352 
advance (see discussion in section 2.2.3). Thus,  was determined equal to the 353 
standard deviation of the added noise (in a noiseless case, a very small value, i.e., 10-5 354 
was adopted).  355 

With the sampling algorithm introduced in section 2.2.4.2, ergodic Markov chains 356 
can be simulated that will converge to the posterior distribution. According to Ter Braak 357 
[29], the number of components N should be at least 2n (n is number of the parameters). 358 
As a result, N was taken to be 44 and the number of iterations was set to be 20000.  359 

For the necessary comparison, cases were set as follows. i) Case 1: observed data 360 
for input were the original deformations d, assuming that the observation was perfect 361 
and no errors exist. ii) Cases 2: observed data for input were contaminated deformations 362 
d+ε, where the noise is Gaussian-distributed to simulate the measurement errors (with 363 
a standard derivation of 1 mm). For robustness testing, there different sets of random 364 
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noise were set, i.e., ε1 ~ N (0,1) for case 2-1 (Fig. 4a), ε2 ~ N (0,1) for case 2-2 (Fig. 365 
4b), and ε3 ~ N (0,1) for case 2-3 (Fig. 4c).  366 

 367 
Fig. 4. Noise to contaminate the observed deformations: (a) case 2-1; (b) case 2-2; (c) case 2-3. 368 

For comparison, an accompanying deterministic inversion (Eq. 1) was run for 369 
every case, respectively, with the same input data and equivalent bounded constraints 370 
mentioned in Table 1. Especially, a Tikhonov regularized deterministic inversion (using 371 
the equation in Table 1) was also run for cases 2, discussed in the last.  372 

To evaluate how well the inversion results fit the actual pressures, coefficient of 373 
determination R2 is introduced: 374 

 ,     (19) 375 

where, qA(zj) is the actual pressure at a monitoring point zj, qI(zj) is the inversion 376 
pressure at zj, the monitoring points are chosen dense enough in the structural domain 377 
(every 0.2 m in this case), and Mp is the number of the points. Generally, R2 ranges from 378 
0 to 1, and the closer R2 is to 1, the closer the inversion result is to the actual values. 379 
But when the inversion results are extremely poor, R2 can yield negative values [31]. In 380 
this case, negative values are modified to 0 indicating a complete failure of an inversion. 381 

3.2 Results  382 

Take case 1 as an example to present the sampling process. As seen in Fig. 5, the 383 
scaling-reduction factors of the 22 parameters  quickly converged to 384 
be less than the threshold value 1.2 within 5000 steps, indicating that the components 385 
were close to their stationary distribution. The last 50% of the samples in the chain were 386 
used to estimate the posterior distribution. 387 

 388 
Fig. 5. Evolution of scale reduction factors for all parameters 389 

The posterior distribution for q(z) was estimated by Eq. (15), and visually 390 
presented in Fig. 6(a). Estimated probability density of pressures at every point of the 391 
wall is illustrated by different color levels quantitatively. More intuitively, for example, 392 
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the posterior densities of pressures at points A, B, and C are presented in Fig. 6(b). More 393 
importantly, posterior mean of the pressure field was also estimated (Eq. 17) to make 394 
an inference of the actual pressures. The actual pressures and posterior mean (PM) 395 
pressure field obtained by Bayesian inversion are presented in Fig. 6(c). Besides, the 396 
optimal solution (OS) obtained by deterministic inversion is also presented in this figure. 397 
It is found that both of the two results fit perfectly with the actual pressures. 398 
Simultaneously, R2 of the two inversions are 1.00, indicating both of Bayesian inversion 399 
and Deterministic inversion are effective in this extreme case where the observation is 400 
perfect and no errors contaminate the input data. 401 

 402 
Fig. 6. Inversion results of case 1: (a) marginal posterior densities of pressure field on the 403 

structure; (b) posterior densities of pressure at Points A, B, and C (illustration example); (c) 404 
comparison between the actual pressures and inversion results obtained by Bayesian and 405 

deterministic inversion. (Note: PM=posterior mean obtained by Bayesian inversion; OS=optimal 406 
solution obtained by deterministic inversion). 407 

3.3 Natural advantages 408 

3.3.1 To deal with ill-conditioning 409 
Then, the input observed data was contaminated by measurement errors, i.e., cases 410 

2. For deterministic inversion, as shown in Figs. 7(a)−(c), although the inversion results 411 
are constrained in the bound of 0−400 kPa, dramatic fluctuation occurs on the overall 412 
pressure field. In addition, the inversion results do not fit with the actual pressures at 413 
all (R2OS=0 in all the three cases). It can be identified as a typical ill-conditioned 414 
problem (or “over-fitting” to measurement errors), i.e., due to the large condition 415 
number of the stiffness matrix K (in Eq. 8), a small error in the deformation 416 
measurement leads to a large bias in the inversion pressures. Compared with the optimal 417 
solution (OS) by deterministic inversion, the posterior means (PM) by Bayesian 418 
inversion seems to be much smoother. In addition, the PM fit relatively well with the 419 
actual pressures in the cases (with R2PM=0.85 in case 2-1, R2PM=0.89 in case 2-2, and 420 
R2PM=0.87 in case 2-3). This is the so-called natural regularization of Bayesian 421 
estimation. That is, the posterior means flatten the “over-fitting” features of individual 422 
solutions. What’s more, the relatively stable posterior means present in the three cases 423 
have also shown robustness of this approach. 424 

  425 
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 426 
Fig. 7. Inversion results: (a) case 2-1; (b) case 2-2; (c) case 2-3. (Note: PM=posterior mean 427 
obtained by Bayesian inversion; OS=optimal solution obtained by deterministic inversion). 428 

Admittedly, there are regularization techniques introduced in deterministic 429 
inversion to treat ill-conditioning. Inversion results of Tikhonov-regularized 430 
deterministic inversion with different regularization factor γr are presented in Figs. 431 
8(a)−(c). It is found that when γr is getting larger, the inversion results are getting 432 
smoother, but the results are more closed to predefined centre values and fit poorly with 433 
the actual pressures. It is difficult to tune this factor to obtain satisfactory results. By 434 
comparison, this Bayesian-based approach requires no regularization techniques but 435 
simultaneously shows “natural” regularization property, which is valuable.  436 

 437 
Fig. 8. Inversion results obtained by deterministic inversion with the help of Tikhonov 438 

regularization while tuning the regularization factor γr: (a) case 2-1; (b) case 2-2; (c) case 2-3. 439 

3.3.2 To deal with non-uniqueness 440 
Without a strong regularization, deterministic inversion may be faced with non-441 

uniqueness, i.e., vastly different solutions can fit equally well observed data. It is 442 
especially the case when the number of unknown parameters is more than the number 443 
of observed data so that inversion of Eq. (8) can be underdetermined [13−14]. 444 
Nevertheless, non-uniqueness is natural in Bayesian inversion and can be quantified 445 
with probabilities which can aid robust decision-making. 446 

On basis of case 1, three cases are carried out where the number of input observed 447 
data are 11 (observing every 2 m, seen in Fig. 9a, case 3-1), 6 (observing every 4 m, 448 
seen in Fig. 9b, case 3-2), and 3 (observing every 10 m, seen in Fig. 9c, case 3-3), while 449 
the unknown parameters keeps unchanged (22 parameters). Without regularization 450 
techniques, deterministic inversion cannot be achieved in these cases since the number 451 
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of unknown parameters is much larger than the number of the observed data [9]. But 452 
the posterior distribution can still be obtained by Bayesian inversion (Figs. 10(a)−(c)). 453 
As for cases 3-1 and 3-2, the number of unknown parameters is 2 and 3.5 times that of 454 
the observed data. It is found that the posterior means (PM) fits relatively well the actual 455 
pressures (R2PM=0.95 and R2PM=0.87, respectively), indicating that Bayesian inversion 456 
is still effective in this situation. Of course, with less observation data, the more 457 
uncertain the result and this is reflected in the posterior distribution. Comparison 458 
between Figs. 10(a)−(c) shows that as the amount of observed data decreases, the 459 
posterior densities become more flat (“hot areas” reduce) and the fitness of the posterior 460 
mean decreases, although the actual pressure field remains within the shaded region 461 
with significant posterior probability. Thus, if available, it is encouraged to collect more 462 
data to achieve a better inversion result. 463 

 464 
Fig. 9. Input observed data for cases 3 where the number of unknown parameters is more than the 465 

observed data: (a) case 3-1; (b) case 3-2; (c) case 3-3. 466 

 467 
Fig. 10. Inversion results obtained by Bayesian inversion in cases 3: (a) case 3-1; (b) case 3-2; (c) 468 

case 3-3. (Note: PM=posterior mean obtained by Bayesian inversion). 469 

It is noting that according to a statistical thinking, the inversion results of Bayesian 470 
inversion are not limited to the posterior mean. It can be more appropriate to make 471 
inference with the complete posterior distribution. For example, with posteriors of 472 
pressures in Figs. 10(a)−(c), probability densities of internal forces at any points on the 473 
wall were further derived seen in Figs. 11(a)−(c). With these probability densities, 474 
statistics inferences, such as expectation of maintenance cost, can be estimated to make 475 
a more robust engineering decision, which is not possible using a deterministic 476 
inversion. 477 
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 478 
Fig. 11. Estimated probability densities of bending moment on the wall in cases 3: (a) case 3-1; (b) 479 

case 3-2; (c) case 3-3. 480 

4 Application in engineering practice 481 

A field data example is carried out to verify effectiveness of this approach in 482 
practical engineering as well as to stimulate discussion on the future extensions.  483 

4.1 Preliminaries  484 

A filed case was recorded in detail in Smethurst and Powrie [32] that a pile bend 485 
under loads imposed by a slope (Fig. 12(a)). Displacements on the pile were measured 486 
by inclinometer tubes cast into the pile (Fig .12(b)). Thus, the objective is inversion of 487 
the net earth pressures acting on the pile based on the inclinometer measurement and 488 
comparation with the net earth pressures recorded in this literature which are deduced 489 
from the strain gauges data. 490 

 491 
Fig. 12. The field example recorded by Smethurst and Powrie [32]: (a) a pile bends in a slope; (b) 492 

observation deflection on the pile; (c) simplified as a cantilever beam. 493 

According to Smethurst and Powrie[32], the pile base was installed into the intact 494 
Wealed Clay, which tightly held the lower portions of the pile. Moreover, displacement 495 
data indicated that there was no movement or rotation at the pile base. Consequently, 496 
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the physical process was assumed to be that of a cantilever beam, subjected to unknown 497 
net pressures due to slope movement, and bending towards the slope toe (Fig. 12(c)). 498 
The forward model of a cantilever beam can be easily obtained by deleting the 499 
foundation reaction term from the beam on elastic foundation model (Appendix B), and 500 
set a fixed end at the pile base.  501 

As a result of the slope, distribution of the pressures can be very complex, which 502 
may lead to a difficult parameterization. However, as mentioned in section 2.1, the more 503 
parameters, the stronger the approximation capacity. In particular, with evenly spaced 504 
nodes, as the number of parameters increases, the actual pressures can ultimately be 505 
approximated arbitrarily well. Thus, a series of pilot calculation were carried out for a 506 
trial. Parameters were set evenly on the pile, while the number of parameters n kept 507 
growing to monitor a convergence of the inversion results (Table 2).  508 

For the prior distribution, as the underlying stratum held the pile bottom perfectly, 509 
it was assumed that the net pressures were less than the self-weight stress of soil at the 510 
pile bottom, i.e., about 300 kPa (a rough calculation of 20 kN/m3 × 14.5 m). Accordingly, 511 
the prior distribution of the parameters was set as xi ~ Uniform(-300,300) (i=1,…,n) 512 
(setting of this prior will be discussed in detail later in section 4.3). According to the 513 
precision of measurement instrument [32],  in the likelihood function is determined 514 
to be 1 mm. Similar to the numerical example, 2n components are run in DE-MC 515 
algorithm and the number of iterations is set to 10000. 516 

4.2 Results 517 

Posterior densities of the pressure field on the pile in calculations A−F are 518 
presented in Figs. 13(a)−(f), respectively. As seen in Figs. 13(a)−(c), when the number 519 
of parameters is relatively small, due to insufficient parameterization capacity, the 520 
shape of the posterior means (PM) seems to be simple. But with more parameters, the 521 
shape of the posterior means becomes complex. As seen in Fig. 13(d)−(f), the posterior 522 
means (PM) seem to remain unchanged with the increase of parameters number. 523 
Simultaneously, posterior means (PM) in calculations A−F are plot in a same figure 524 
(Fig. 14). It is found that with the increase of parameters, the inversion results 525 
converged gradually. Especially, the posterior means of 15-parameters and 16-526 
parameters almost coincided, indicating a stable result has been achieved, seen Fig. 527 
13(f). Meanwhile the actual net pressures recorded in Smethurst and Powrie [32] are 528 
also presented in Fig. 13(f). In general, the posterior means (PM) fit quite well with the 529 
actual pressures with R2PM=0.71, indicating effectiveness of the Bayesian load inversion 530 
approach.  531 

It is worth noting that the inversion pressures deviate from the actual pressures at 532 
the pile bottom to a certain extent. It can be attributed to the displacement constraint of 533 
the cantilever beam where deflection is not sensitive to the pressures at all. For 534 
comparison, deterministic inversion with an equivalent constraint was also run for this 535 
case. The inversion results by deterministic inversion are presented by the red line (OS) 536 
in Fig. 13(f). It is found that ill-conditioning made deterministic inversion failed again 537 
with R2OS=0. By contrast, Bayesian inversion proved to be a more effective approach 538 
in handing ill-conditioning in this case.  539 

es
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 540 
Fig. 13. Inversion results: (a) calculation A (4 parameters); (b) calculation B (8 parameters); (c) 541 

calculation C (12 parameters); (d) calculation D (14 parameters); (e) calculation E (15 542 
parameters); (f) calculation F (16 parameters). (Note: PM=posterior mean obtained by Bayesian 543 

inversion; OS=optimal solution obtained by deterministic inversion). 544 

  545 
Fig. 14. Posterior means obtained by calculations A−F. (Note: PM(n)=posterior mean obtained in 546 

the n-parameters pilot calculation). 547 

In order to explain the effectiveness of the proposed Bayesian approach, the 548 
posterior distribution of earth pressures, as depicted in Fig. 13(f), is utilized to drive the 549 
cantilever beam model to compute the pile displacement. As shown in Fig. 15, the 550 
measured displacement data fall within the computed 95% confidence interval and 551 
generally fits well with the posterior mean. However, it is important to note that the 552 
posterior mean does not fit each individual data point perfectly, as evidenced by an 553 
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example at depth 5.9 m. This can be attributed to the fact that, unlike deterministic 554 
inversion, the Bayesian approach does not attempt to minimize the error vector in Eq. 555 
(6). Rather, it treats the errors as random variables, allowing both the best-fitted 556 
displacement and quantities of “less-fitted” ones to be considered feasible. By 557 
accurately averaging all feasible results, the posterior mean is smoothed out, thereby 558 
preventing overfitting to measurement errors and the subsequent emergence of ill-559 
conditioned features in the earth pressures.   560 

  561 
Fig. 15. The computed pile displacement and corresponding measurement data. 562 

4.3 Robustness tests 563 

It should be noted that regularization techniques are not required in this approach. 564 
However, as shown in the cases, a physically plausible bound is needed to specify 565 
parameter constraints. Accordingly, a doubt may arise that are the inversion results 566 
sensitive to the bounds? Specifically, how loose can the bounds be while retaining 567 
satisfactory performance, and what if the bounds are too narrow? Only if these 568 
questions are answered, can this approach be used with confidence in practical 569 
engineering. 570 

In response to the first question, an extreme situation was assumed for this field 571 
case. Assumed that the pile bottom tended to deform towards the back of the slope. Due 572 
to the passive deformations, the soils were forced to be in a limited state. In this situation, 573 
net pressures on the pile might reach a limited passive pressure. The passive pressures 574 
on the pile bottom can be roughly estimated as Kp × 300 kPa, where Kp is the coefficient 575 
of passive earth pressure that can be estimated as Kp = tan2(45o+φ/2) [33] = tan2(45o+30o 576 
/2) = 3. Accordingly, the bound for constraints must be relaxed to be [-900, 900] kPa., 577 
Then effectiveness of this approach under the prior xi ~ Uniform(-900,900) (i=1,…,n) 578 
were tested here. It is worth mentioning again that [-900, 900] is extremely loose and 579 
redundant for this case, for the following three reasons. i) the soils were assumed to be 580 
in a passive limited state with a rupture surface extended to the ground surface; ii) Kp 581 
was estimated according to the fraction angle of intact weald clay that assumed all the 582 
strata were replaced by this stratum with the best engineering properties; iii) Kp was 583 
estimated according to Rankine’s theory that assumed the slope was filled to be flat. 584 
For comparison, similar bounds of [-600, 600] and [-1200, 1200] kPa (2 and 4 times of 585 
the original bounds, respectively) were also tested here.  586 

Inversion results under the bounds of [-600, 600], [-900, 900], and [-1200, 1200] 587 
kPa were presented in Figs. 16(a)−(c), respectively. Obviously, with the relaxation of 588 
the bounds, samples outside the original bound [-300, 300] kPa were accepted as 589 
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feasible solutions as well that makes the posterior distribution more and more flat (“hot 590 
area” reduced). However, the posterior mean that represents the majority of feasible 591 
solutions was still capable of smoothing out ill-conditioning features of individual 592 
solutions. Although the accuracy of the posterior mean decreased with relaxation of the 593 
bounds, satisfactory inversion results could still be obtained in the extreme case, i.e. [-594 
900, 900], with R2PM=0.66. By contrast, inversion results of deterministic inversion 595 
were getting more and more ill-conditioned with relaxation of the bounds. These tests 596 
demonstrate robustness of this approach in practical applications. That is, even when 597 
one’s engineering judgement is very weak to determine the prior bounds (e.g., in the 598 
extreme case of [-900 900] kPa), satisfactory inversion results can still be obtained.  599 

 600 
Fig. 16. Inversion results under different bounds: (a) [-600, 600] kPa; (b) [-900, 900] kPa; (c) [-601 

1200, 1200] kPa. (Note: range of x-axis was set to be [-300, 300] kPa in all the figures since 602 
posterior mean is the main focus; PM=posterior mean obtained by Bayesian inversion; 603 

OS=optimal solution obtained by deterministic inversion). 604 

In terms of the second question, choosing bounds that are too narrow can be 605 
dangerous. For instance, if the bound was determined to be [-50, 50] kPa for this case, 606 
the actual pressures cannot be identified. Most importantly, as the actual pressure will 607 
never be known in advance, how could one know whether a bound was determined to 608 
be too tight? One way to address this is to performance successive relaxation of the 609 
bounds and monitor whether the inversion results significantly differ each other and 610 
exceed the original bound. If yes, the original bound may be unreasonable. For example, 611 
in this case, when the original bound was relaxed from [-300, 300] to [-600, 600] kPa, 612 
the posterior means did not differ too much (Fig. 16a), suggesting that the choice of [-613 
300, 300] kPa was reasonable.  614 

4.4 Limitations and future Extensions 615 

It should be noted that the testing cases did not consider the non-linear mechanical 616 
behavior of the structures. However, Smethurst and Powrie [32] have suggested that 617 
cracks may develop between 4.5 m and 8.5 m depth of the pile, which can result in a 618 
non-linear stiffness reduction of the concrete during the loading process. While the full 619 
uncracked stiffness was used for the inversion approach, it is important to consider 620 
whether this non-linear behavior would significantly affect the inversion results. To 621 
address this question, an extreme case (referred to as the “cracked case”) was tested, 622 
where the cracked bending stiffness (75% of the uncracked value, according to 623 
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Smethurst and Powrie) was used between 4.5 m and 8.5 m depth of the pile throughout 624 
the entire loading process. All other conditions were kept the same as in Calculation F 625 
(referred to as the “uncracked case”). 626 

The results of the cracked case are presented in Fig.17, and the net pressure 627 
(PM(UC)) of the uncracked case is also shown in this figure as a black dashed line. It 628 
is founded that due to the reduction of stiffness, the net pressures (PM(UC)) in the 629 
uncracked case exceeded those obtained in the cracked case (PM(C)) over the entire 630 
pile. This made the inversion results of the cracked case more closely fit the actual 631 
pressure over 6 ‒ 8 m depth, while less accurately fitting the actual pressures over 0 ‒ 632 
3 m depth. Overall, R2 of the results in the cracked case was 0.69. Both inversion results 633 
were broadly consistent with the actual net pressures, indicating that non-linear 634 
reduction of bending stiffness of the pile can be ignored in this filed case.  635 

 636 
Fig. 17. Inversion results of the cracked case (Note: PM=posterior mean; C=cracked; 637 

UC=uncracked, using the results from Fig. 12f). 638 

However, it is important to acknowledge that in cases involving highly non-linear 639 
structural behavior, such as load inversion on largely deformed tunnel structures 640 
mentioned in the introduction section, ignoring non-linear behavior may introduce 641 
significant bias in the results. Moreover, non-linear behavior necessitates an iterative 642 
solution of the forward model, resulting in computational costs that are a product of the 643 
number of iterations in the forward model and the number of Markov Chain steps. This 644 
can be time-consuming and pose challenges in achieving convergence in our approach. 645 
Hence, further research is warranted to address this limitation. It should also be noted 646 
that in this study, we assumed that the model error was negligible compared to the 647 
measurement error. Therefore, the likelihood function only accounted for the 648 
measurement error. The satisfactory inversion results obtained imply that this 649 
assumption is acceptable in this simple field case. However, it is possible that the model 650 
error could have an impact on the inversion results, particularly in cases where the 651 
physical process exhibits high non-linearity. Therefore, in future work, it might be 652 
worthwhile to consider the model error in order to enhance the accuracy of the inversion 653 
results. 654 

The computational cost of the filed case provides a reference for the potential 655 
extension to non-linearity. Although the forward model is simple and linear, a dense 656 
FEM mesh was used with 101 elements spaced at 0.1 m. Accurate estimation of the 657 
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posterior distribution for calculations A−F was achieved with Markov chains of length 658 
10000. Using a desktop with a Ryzen 9, 12-Core, 3.8GHz Processor, the DE-MC for 659 
calculations A−F, with n values of 4, 8, 12, 14, 15, and 16, took 27.9, 56.6, 83.0, 96.9, 660 
103.9 and 109.4 seconds, respectively. This low computational cost suggests that one 661 
should be able to extend this approach to nonlinear cases in the near future. However, 662 
improving efficiency of the MCMC sampling method is also an urgent consideration 663 
[34]. 664 

5 Conclusions 665 

A Bayesian inversion approach is presented to identify the earth pressures on in-666 
service underground structures using structural deformation data. This approach offers 667 
a natural regularization advantage when input data is noisy or limited, as demonstrated 668 
by the following: 669 

i) When deformation data is contaminated by measurement errors, deterministic 670 
inversion can result in ill-conditioning. However, the posterior mean of the Bayesian 671 
approach flattens ill-conditioned features of individual solutions and identifies the 672 
actual pressures well with no need for explicit regularization. 673 

ii) The posterior distribution in the Bayesian approach recognizes and quantifies 674 
non-uniqueness probabilistically. This property is particularly valuable in 675 
underdetermined cases, where a solution cannot be uniquely determined. The numerical 676 
example demonstrates that this approach yields relatively good inversion results even 677 
when the number of unknown parameters is slightly larger than that of the observed 678 
data. 679 

This approach has been applied to a recorded field case to infer net pressures on a 680 
pile. The actual recorded pressures fit well with the inversion results, indicating 681 
effectiveness of this approach in practical engineering.  682 

It is worth mentioning that all cases presented in this paper are linear and classical. 683 
Further extensions to non-linear mechanical systems (such as highly deformed tunnel 684 
structures) are of great interest. The small computational cost in the current applications 685 
suggests that such extensions can be feasible. Certainly, improving the statistical and 686 
computational efficiency of MCMC algorithm and considering model errors in the 687 
likelihood function are also urgent. 688 

APPENDIX A: LINEAR INTERPOLATING VECTOR 689 

This appendix presents the commonly-used linear interpolating vector Iz(z): 690 

               (A1) 691 

where q contains n-1 pieces of the linear functions on intervals [zi, zi+1] (i=1,…,n-1), 692 
and vector x contains n unknown nodal values (x1,x2,…,xn)T. Coordinate of the nodes is 693 
denoted by z=(z1,z2,…,zn)T, and spacing between the nodes by Δsi= zi+1− zi. 694 

The linear interpolant for q at z can be written as: 695 

              (A2) 696 

where, 697 
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,             (A3) 698 

,              (A4) 699 

For mathematical convenience, matrix is adopted, and thus: 700 

       (A5) 701 

APPENDIX B: “BEAM ON ELASTIC FOUNDATION” MODEL 702 

The partial differential governing functions of “beam on elastic foundation” model 703 
can be described as  704 

             (B1) 705 

where EI is the flexural rigidity of the beam that may vary with depth z, y represents 706 
the deflection function of the beam. k(z)y is the reaction of the foundation, and k is the 707 
foundation stiffness. q is the pressure field determined by load parameters x (Eq. A1). 708 

Discretization of (B1) using finite element method: 709 

               (B2) 710 

Where d’ is the predicted deformation vector under pressure field q. f is a vector-valued 711 
function where f (Iz(z)x) is equivalent to q (i.e., Iz(z)x) with the transformation rules of 712 
virtual work. K is the global stiffness matrix that is assembled by element stiffness 713 
matrix ke, consisting two parts: 714 

 715 

Where kb represents beam stiffness matrix. kf is closely resembles the beam mass 716 
matrix due to the term k(z)y in (B1). Derivation of them has been presented in Griffiths 717 
[35]:  718 

        (B3) 719 

where L is the length of an individual beam element, ze is the coordinate of element e, 720 
ξ=z-ze, and 721 

         (B4) 722 

f is also assembled by element forces fe(Iz(z)x) that is equivalent to the pressures 723 
q with the transformation of virtual work equation:  724 
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          (B5) 725 

where, 726 

 (B6) 727 

 728 
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