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We investigate the use of a certain class of functional inequalities known
as weak Poincaré inequalities to bound convergence of Markov chains to
equilibrium. We show that this enables the straightforward and transpar-
ent derivation of subgeometric convergence bounds for methods such as
the Independent Metropolis–Hastings sampler and pseudo-marginal methods
for intractable likelihoods, the latter being subgeometric in many practical
settings. These results rely on novel quantitative comparison theorems be-
tween Markov chains. Associated proofs are simpler than those relying on
drift/minorisation conditions and the tools developed allow us to recover and
further extend known results as particular cases. We are then able to provide
new insights into the practical use of pseudo-marginal algorithms, analyse the
effect of averaging in Approximate Bayesian Computation (ABC) and the use
of products of independent averages and also to study the case of log-normal
weights relevant to particle marginal Metropolis–Hastings (PMMH).

1. Introduction.

1.1. Motivation. The theoretical analysis of Markov chain Monte Carlo (MCMC) algo-
rithms can provide twofold benefits for users. On the one hand, it provides fundamental reas-
surance and theoretical guarantees for the correctness of algorithms, and on the other hand,
can also offer guidance on parameter tuning to maximise efficacy.

Aside from high-dimensional scaling limit arguments [28], two approaches have proved
particularly successful for characterising the properties of MCMC algorithms [6]: Lyapunov
drift/minorisation conditions [15, 26, 30] and functional-analytic tools on Hilbert spaces, in
particular in the reversible setup [23], Chapter 22 in [15]. The former have been the most suc-
cessful for the study of stability and convergence rates, despite the inherent difficulty of con-
structing an appropriate Lyapunov function. A particular success has been the development
of tools to analyse the scenario where the Markov transition kernel does not possess a spec-
tral gap, and hence converges at a subgeometric rate (see [15] for a book-length treatment).
In contrast, functional-analytic tools have been particularly successful at characterising the
resulting asymptotic variance, but their application to characterising convergence rates has
been limited to the scenario where a spectral gap exists (see [22] for example). This is de-
spite the existence of functional-analytic tools such as weak Poincaré or Nash inequalities,
which have been successfully applied to continuous-time Markov processes in the absence of
a spectral gap [29].

The aim of this paper is to fill this gap, and show how weak Poincaré inequalities can be
particularly useful for analysing certain MCMC algorithms and answering pertinent practical
questions. Our main focus here will be on pseudo-marginal algorithms [3], a particular type
of MCMC method for which pointwise unbiased estimates of the target density are sufficient
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for their implementation. We show that weak Poincaré inequalities allow us to significantly
expand and greatly simplify the results of [4], characterising precisely the degradation in
performance incurred when using noisy estimates of the target density. This is particularly
appealing because pseudo-marginal Markov kernels often do not possess a spectral gap on
general state spaces, either because the noise is unbounded [3, 4] or because the noise is not
uniformly bounded and “local proposals” are used [24], which is fairly common in practice.

To the best of our knowledge, while Nash inequalities for finite state space Markov chains
have been considered in [13], weak Poincaré inequalities have not received the same atten-
tion in this context and it is not possible to point to a suitable reference for background.
In Section 2, we provide a comprehensive overview of the theory tailored to the Markov
chain scenario; some of the results given therein are new to the best of our knowledge. In
Section 3, we develop a series of new comparison results between Markov chains sharing a
common invariant distribution. In Section 4, we apply our results to pseudo-marginal algo-
rithms, providing a simple and comprehensive theory of the impact of using noisy densities
on the convergence properties of pseudo-marginal algorithms, which we leverage to clarify
implementational considerations. We consider the effect of averaging, with applications to
Approximate Bayesian Computation (ABC) and when using products of independent aver-
ages, and finally provide an analysis when the weights are log normal, relevant to the Particle
Marginal MH (PMMH).

The proofs not appearing in the main text can be found in the Supplementary Material [2],
along with a list of notation used throughout the article.

2. Weak Poincaré inequalities.

2.1. General case.

2.1.1. Definitions and basic results. Throughout this work, in analogue with the existing
notions for continuous-time Markov processes [29], we will call a weak Poincaré inequality
an inequality of the following form:

DEFINITION 1 (Weak Poincaré inequality, α-parameterisation). Given a Markov transi-
tion operator P on E, we will say that P ∗P satisfies a weak Poincaré inequality if, for any
f ∈ L2

0(μ),

‖f ‖2
2 ≤ α(r)E

(
P ∗P,f

) + r�(f ) ∀r > 0,

where α : (0,∞) → [0,∞) is a decreasing function, and � : L2(μ) → [0,∞] is a functional
satisfying for any f ∈ L2(μ), c > 0 and n ∈ N,

(1) �(cf ) = c2�(f ), �
(
P nf

) ≤ �(f ),
∥∥f − μ(f )

∥∥2
2 ≤ a�

(
f − μ(f )

)
,

where a := supf ∈L2
0(μ)\{0} ‖f ‖2

2/�(f ).

REMARK 2. A popular choice of � is � = ‖ · ‖2
osc, for which a ≤ 1, but we will also

later consider � = ‖ · ‖2
2p for p ≥ 1, which also has a ≤ 1 by Lyapunov’s inequality.

REMARK 3. Note that α(r) typically diverges as r → 0. By contrast, a strong Poincaré
inequality refers to the situation when α is uniformly bounded above by α(r) ≤ 1/CP for
some CP > 0; in this case, we may take r → 0 and recover the standard strong Poincaré
inequality CP‖f ‖2

2 ≤ E(P ∗P,f ) for f ∈ L2
0(μ), from which one can immediately deduce

geometric convergence [17], that is, for any f ∈ L2
0(μ), n ∈ N,

(2)
∥∥P nf

∥∥2
2 ≤ (1 − CP)n‖f ‖2

2.
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In what follows, we show that a weak Poincaré inequality implies the existence of a function
n 
→ γ (n), which is decreasing to 0 such that, for any f ∈ L2

0(μ) and �(f ) < ∞,

(3)
∥∥P nf

∥∥2
2 ≤ γ (n)�(f ).

A very useful equivalent formulation of the weak Poincaré inequality, which bears some
resemblance to the “super-Poincaré inequality” of [29], is the following.

DEFINITION 4 (Weak Poincaré inequality, β-parameterisation). Given a Markov transi-
tion operator P on E, we will say that P ∗P satisfies a weak Poincaré inequality if, for any
f ∈ L2

0(μ),

‖f ‖2
2 ≤ sE

(
P ∗P,f

) + β(s)�(f ) ∀s > 0,

where β : (0,∞) → [0,∞) is a decreasing function with β(s) ↓ 0 as s → ∞, and � :
L2(μ) → [0,∞] is a functional satisfying, (1) for any f ∈ L2(μ), c > 0 and n ∈ N.

These two formulations are equivalent; see our Remark 5 below, and we will typically refer
to a “weak Poincaré inequality” without specifying the parameterisation. If there is ambiguity,
we will write α- or β-weak Poincaré inequality to specify the parameterisation. Because a is
such that ‖f ‖2

2 ≤ a�(f ) for all f ∈ L2
0(μ), one can always take β ≤ a in Definition 4 and

α(r) = 0 for r ≥ a in Definition 1.

REMARK 5. Suppose an α-weak Poincaré inequality holds for a function α with α(r) =
0 for r ≥ a. Then a β-weak Poincaré inequality holds with β(s) := inf{r > 0 : α(r) ≤ s}.
Conversely, suppose a β-weak Poincaré inequality holds for a function β with β ≤ a. Then
an α-weak Poincaré inequality holds with α(r) := inf{s > 0 : β(s) ≤ r}. This procedure al-
ways returns a right-continuous function, so for a given α (or β) satisfying a weak Poincaré
inequality, iterating this procedure will return the right-continuous version of α (or β).

While in practice establishing a weak Poincaré inequality is often the most tractable op-
tion, a third (essentially) equivalent formulation plays an important rôle to establish (3) with
optimal rate function γ . We need the following functions.

DEFINITION 6. For β as in Definition 4, we let:

1. K : [0,∞) → [0,∞) be such that K(u) := uβ(1/u) for u > 0 and K(0) := 0,
2. K∗ : [0,∞) → [0,∞] be such that K∗(v) := supu≥0{uv − K(u)} is the convex conju-

gate of K .

Then for f ∈ L2
0(μ) such that 0 < �(f ) < ∞, the weak Poincaré inequality can be for-

mulated as follows with u = 1/s > 0:

u‖f ‖2
2 ≤ E

(
P ∗P,f

) + K(u)�(f ),

which by rearranging terms and optimising leads to

K∗
( ‖f ‖2

2

�(f )

)
≤ E(P ∗P,f )

�(f )
.

Relevant properties of K∗ can be found in Lemma 1 of the Supplementary Material. The rate
function γ in (3) is the inverse function of Fa given below, which is well defined.



COMPARISON OF MARKOV CHAINS VIA WPI’S 3595

LEMMA 7. Let Fa(·) : (0, a] →R, where (0, a] ⊂ D, be given by

Fa(x) :=
∫ a

x

dv

K∗(v)
,

where K∗ is given in Definition 6 and D := {v ≥ 0 : K∗(v) < ∞}. Then Fa(·):
1. is well defined, convex, continuous and strictly decreasing;
2. is such that limx↓0 Fa(x) = ∞;
3. has a well-defined inverse function F−1

a : (0,∞) → (0, a), with F−1
a (x) → 0 as

x → ∞.

The main result of this section is as follows.

THEOREM 8. Assume that μ and P ∗P satisfy a weak Poincaré inequality as in Defini-
tion 4. Then for f ∈ L2

0(μ) such that 0 < �(f ) < ∞ and any n ∈ N,∥∥P nf
∥∥2

2 ≤ �(f )F−1
a (n),

where Fa : (0, a] →R is the decreasing convex and invertible function as in Lemma 7.

REMARK 9. When
∫ ∞
a

dv
K∗(v)

< ∞, one can define F∞(x) := ∫ ∞
x

dv
K∗(v)

for each x > 0,

and since Fa(x) ≤ F∞(x), one can similarly derive a bound ‖P nf ‖2
2 ≤ �(f )F−1∞ (n).

REMARK 10. A different proof relying on an alternative use of the Poincaré inequality is
given in the Supplementary Material for completeness, which corresponds to the formulation
of [29], Theorem 2.1, advocated by the authors for its tractability, but leads to suboptimal re-
sults. We have found the formulation of Theorem 8 sufficiently flexible for our applications.
This general approach was in fact suggested in the continuous-time setting; see, for example,
[29], equation (1.4), but only later utilised in [5], where improved rates were obtained. Our
approach here can be seen as the natural discrete-time analogue; however, we further gener-
alise the approach to allow for general � and a = ∞, and make explicit the connection with
convex conjugates.

REMARK 11. If P ∗P satisfies a strong Poincaré inequality with constant CP, one may
take the corresponding β to be β(s) = aI{s ≤ C−1

P }. Conversely, if β(s) = aI{s ≤ C−1
P }

then one can deduce that a strong Poincaré inequality holds. A simple calculation shows that
K∗(v) = CPv, for 0 ≤ v ≤ a, and

Fa(x) =
∫ a

x

dv

CPv
dv = C−1

P log
(

a

x

)
,

from which we recover an exponential rate. However, F−1
a (n) = a exp(−CPn) and since

exp(−CPn) ≥ (1−CP)n because −x/
√

1 − x ≤ log(1−x) ≤ −x for x ∈ [0,1), this suggests
a loss compared to a more direct method leading to (2). In this setting, we may also take
�(f ) = ‖f ‖2

2 and a = 1.

REMARK 12. By following the proof of Theorem 8 and stopping early, one can obtain
bounds which are tighter but sometimes less convenient to work with.

For example, writing T ◦n for the n-fold composition of the map T with itself, one can
obtain the bound

(4)
‖P nf ‖2

2

�(f )
≤ (

Id − K∗)◦n( ‖f ‖2
2

�(f )

)
,
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and indeed a decay estimate of this form is equivalent to the original WPI holding with no
loss of information; take n = 1. Going one step further in the proof, one can obtain the bound

‖P nf ‖2
2

�(f )
≤ F−1

a

(
n + Fa

( ‖f ‖2
2

�(f )

))
,

which is weaker than (4) due to the integral approximation, but stronger than the separable
bound which is stated in the theorem.

A useful lemma we will make use of later concerning linear rescalings is the following.

LEMMA 13. Let β̃(s) := c1β(c2s) for c1,c2 > 0. Then K̃∗(v) := supu∈R+ u[v −
β̃(1/u)] = c1c2K

∗(v/c1) and the corresponding function F̃a(w) = c−1
2 Fa/c1(w/c1). Fur-

thermore, when c1 ≥ 1, F̃a(w) ≤ c−1
2 Fa(w/c1), and we can conclude F̃−1

a (x) ≤ c1F
−1
a (c2x).

2.1.2. Examples of β(s) and γ = F−1
a . Throughout the following examples (which co-

incide with those of [29], Corollary 2.4), we use the notation of Theorem 8.

LEMMA 14. For β(s) = c0s
−c1 , K∗(v) = C(c0, c1)v

1+c−1
1 . Then with F∞ as in Re-

mark 9, the convergence rate is bounded by

F−1∞ (n) ≤ c0(1 + c1)
1+c1n−c1 .

LEMMA 15. Assume β(s) = η0 exp(−η1s
η2) for η0, η1, η2 > 0 and choose a > 0. Then

there exist C > 0, 0 < v0 < 1 ∧ a such that, for v ∈ [0, v0],

K∗(v) ≥ Cv

(
log

(
1

v

))−1/η2

.

In addition, there exists C′ > 0 such that, for all n ∈N,

F−1
a (n) ≤ C′ exp

(
−

(
C

1 + η2

η2
n

)η2/(1+η2)
)
.

LEMMA 16. Assume β(s) = c0 ·(log max(c1, s))
−p for c0 > 0, c1 > 1, p > 0. Then there

exist v0 > 0, C > 0 such that, for v ∈ [0, v0],
K∗(v) ≥ C · v1+1/p · exp

(−(v/c0)
−1/p)

.

In addition, there exists C′ > 0 such that, for all n ∈N,

F−1
a (n) ≤ C′ · (

log max(n,2)
)−p

.

2.2. Reversible case. When the kernel P is reversible with respect to μ, we can derive a
simplified weak Poincaré inequality in terms of P directly, rather than P ∗P , making the ap-
proach much more practical. This kind of result seems to be new to the best of our knowledge,
and indeed the need to handle P ∗P is one of the key subtleties of our present discrete-time
setting as opposed to the continuous-time setting. Furthermore, we can also derive a converse
result; a weak Poincaré inequality is necessary for subgeometric convergence.
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2.2.1. Simplified weak Poincaré inequality.

DEFINITION 17 (Weak Poincaré inequality; reversible case). Given a reversible Markov
transition operator P on E, we will say that P satisfies a weak Poincaré inequality if, for any
f ∈ L2

0(μ),

‖f ‖2
2 ≤ α(r)E(P,f ) + r�(f ) ∀r > 0,

where α : (0,∞) → [0,∞) is a decreasing function, and � : L2(μ) → [0,∞] is a functional
satisfying: for any f ∈ L2(μ), c > 0 and n ∈N,

�(cf ) = c2�(f ), �
(
P nf

) ≤ �(f ),
∥∥f − μ(f )

∥∥2
2 ≤ a�

(
f − μ(f )

)
,

with a := supf ∈L2
0(μ)\{0} ‖f ‖2

2/�(f ).
A β-weak Poincaré inequality for P is analogously defined: for a function β : (0,∞) →

[0,∞) decreasing with β(s) ↓ 0 as s → ∞, for any f ∈ L2
0(μ),

‖f ‖2
2 ≤ sE(P,f ) + β(s)�(f ) ∀s > 0.

We are interested now to obtain an appropriate Poincaré inequality for P ∗P = P 2 from a
corresponding Poincaré inequality for P . The key complication is the left-hand side of the
spectrum, around −1. In order to rule out periodic behaviour (which will prevent conver-
gence), some assumptions on the spectrum in a neighbourhood of −1 are required.

LEMMA 18. Suppose that the reversible kernel P possesses a left spectral gap: there
exists some 0 < cgap ≤ 1 such that the spectrum of P is bounded below:

infσ(P ) ≥ −1 + cgap.

Then we obtain the bound on the Dirichlet forms given f ∈ L2(μ) by

E
(
P 2, f

) ≥ cgapE(P,f ).

COROLLARY 19. In the setting of Lemma 18, it immediately follows that if P satisfies a
weak Poincaré inequality with function β as in Definition 17, P 2 satisfies a weak Poincaré
inequality with β̃ given by β̃(s) := β(cgaps):

‖f ‖2
2 ≤ sE

(
P 2, f

) + β̃(s)�(f ) ∀s > 0.

Thus the convergence rate F̃−1
a for ‖P nf ‖2

2 can be immediately deduced from Theorem 8
and Lemma 13.

When there is no left spectral gap, we can generalise the above results using a weak
Poincaré inequality for −P .

THEOREM 20. Suppose P is μ-reversible. Assume the following two weak-Poincaré in-
equalities hold: for all s > 0, f ∈ L2

0(μ):

‖f ‖2
2 ≤ sE(−P,f ) + β−(s)�(f ),(5)

‖f ‖2
2 ≤ sE(P,f ) + β+(s)�(f ).(6)

Then the following weak Poincaré inequality for P 2 holds:

(7) ‖f ‖2
2 ≤ sE

(
P 2, f

) + β(s)�̃(f ),
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for all s > 0, f ∈ L2
0(μ), where

β(s) := inf
{
s1β+(s2) + β−(s1)|s1 > 0, s2 > 0, s1s2 = s

}
,

�̃(f ) := �(f ) ∨ �
(
(Id + P)1/2f

)
.

Recall that a μ-reversible Markov kernel P is positive if for any f ∈ L2(μ), 〈Pf,f 〉 ≥ 0,
and a positive reversible kernel P has spectrum contained in the nonnegative interval σ(P ) ⊂
[0,1]. When P is reversible and positive, convergence of P n can be straightforwardly derived
as then cgap = 1.

THEOREM 21. Assume that the kernel P is reversible and positive and satisfies a weak
Poincaré inequality as in Definition 17. Then Theorem 8 applies, so for f ∈ L2

0(μ) such that
0 < �(f ) < ∞ and any n ∈ N, ∥∥P nf

∥∥2
2 ≤ �(f )F−1

a (n).

PROOF. Since P is reversible and positive, we can apply Corollary 19 with cgap = 1
to see that P 2 satisfies a weak Poincaré inequality with the same function β . We can then
immediately apply Theorem 8 to conclude. �

REMARK 22. Realistic MCMC kernels will all possess a nonzero left spectral gap. In-
deed, popular methods such as the Independent Metropolis–Hastings sampler, many random
walk Metropolis algorithms, and the resulting pseudo-marginal chains we will consider later
are even positive [4], Proposition 16. Furthermore, a given reversible kernel P can be straight-
forwardly modified to possess a positive left spectral gap by considering the so-called lazy
chain Q := εId + (1 − ε)P for ε ∈ [0,1). Indeed, one of our contributions in Section 3 is to
generalise this construction and give versions of Lemma 18 and Corollary 19 holding under
weaker assumptions; see Theorem 40.

2.2.2. Necessity of weak Poincaré inequalities. We can also derive a converse to Theo-
rem 8 in the reversible setting. For our explicit examples of β in Section 2.1.2 as well as in the
geometric case (Remark 3), it turns out that we can derive a converse result, thus demonstrat-
ing, at least in the reversible setting, that our approach is able to recover the best possible rates
of convergence for a given β when β is polynomial or polylogarithmic; see Remark 24. In
the continuous-time setting, similar converse results have also been derived; see, for instance,
[29], Theorem 2.3.

PROPOSITION 23. Let P be μ-self-adjoint Markov transition operator and assume for
any n ∈ N, and f ∈ L2

0(μ),

(8)
∥∥P nf

∥∥2
2 ≤ γ (n)�(f ),

for some functional � : L2(μ) → [0,∞] satisfying (1) and a decreasing function γ : R+ →
(0,∞), with γ (s) → 0 as s → ∞. Then P 2 satisfies a weak Poincaré inequality (Definition 4)
with

β(s) ≤ β1(s) := sup
t≥s

inf
n≥2

{
tn

(t − 1)n−1 · (n − 1)n−1

nn
· γ (n)

}
∀s > 1,

which is decreasing and decreases to 0.
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Similarly, suppose that under the same assumptions on (μ,f,�), and only assuming P to
be μ-invariant, it holds that

∥∥P nf
∥∥2

2 ≤ �(f ) · F−1
(
n + F

( ‖f ‖2
2

�(f )

))

for a function F : R+ → (0,∞) which is decreasing, continuous, divergent at 0, with an
inverse function F−1 which is decreasing, continuous and convex, and such that log(−DF−1)

is convex.
Then P ∗P satisfies a weak Poincaré inequality with

K∗(v) ≤ K∗
1 (v) = v − F−1(

1 + F(v)
)
,

from which a corresponding β can be deduced via convex duality.
Finally, suppose that under the same assumptions on (μ,f,�), and again only assuming

P to be μ-invariant, it holds that

‖P nf ‖2
2

�(f )
≤ (

Id − K̃∗)◦n( ‖f ‖2
2

�(f )

)
,

for some function K̃∗ : [0, a] → [0, a] which is increasing, convex, and vanishes at 0. Then
P ∗P satisfies a weak Poincaré inequality with

K∗(v) ≤ K̃∗(v),

from which a corresponding β can again be deduced via convex duality.

REMARK 24. For explicit computations, it can be useful to apply the elementary bounds

sn

(s − 1)n−1 = (s − 1) ·
(

s

s − 1

)n

≤ (s − 1) · exp
(

n

s − 1

)
,

and

(n − 1)n−1

nn
= 1

n
·
(

n − 1

n

)n−1
≤ 1

2n
,

to bound

inf
n≥2

{
sn

(s − 1)n−1 · (n − 1)n−1

nn
· γ (n)

}

≤ 1

2
· inf
n≥2

{
γ (n)

(
n

s − 1

)−1
· exp

(
n

s − 1

)}

≤ 1

2
· sup

t≥s
inf
n≥2

{
γ (n)

(
n

t − 1

)−1
· exp

(
n

t − 1

)}
=: β2(s),

which is often more convenient to work with, and is again decreasing and decreases to 0.
We may consider the following procedure. Given

‖f ‖2
2 ≤ sE

(
P ∗P,f

) + β(s)�(f ) ∀s > 0,

apply our Theorem 8 to deduce that ‖P nf ‖2
2 ≤ �(f ) · γ (n). Then apply the above construc-

tion to show that P ∗P satisfies

‖f ‖2
2 ≤ sE

(
P ∗P,f

) + β2(s)�(f ) ∀s > 0,

with β2 as above. In the examples considered in Section 2.1.2, we find that β2(s) ≤ c1 ·
β(c2 · s) for positive constants c1, c2; see the Supplementary Material for explicit calcula-
tions. We do not address whether this will hold in general. In particular, if β is polynomial
or polylogarithmic then β2 and β have the same asymptotic behaviour up to a multiplicative
constant.
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2.3. Illustration: Independent MH sampler. As a concrete illustration of the results of
Section 2.2 we consider the Independent Metropolis–Hastings (IMH) algorithm. This has
been studied previously in [20, 21] using drift/minorisation conditions, and we show in
this subsection that we recover comparable subgeometric rates of convergence using weak
Poincaré inequalities. We fix a target density π and a positive proposal density q on E and
define

w(x) := π(x)

q(x)
, x ∈ E.

Then the IMH chain has reversible transition kernel P given by

P(x,dy) = a(x, y)q(y)dy + ρ(x)δx(dy),

where a(x, y) = [1 ∧ w(y)
w(x)

], and ρ(x) = ∫ [1 − a(x, y)]q(dy). In this case, it follows from
reversibility that we have the following well-known representation.

LEMMA 25. We can express

E(P,f ) = 1

2

∫
π(x)π(y)

(
w−1(x) ∧ w−1(y)

)[
f (y) − f (x)

]2 dx dy,

and

‖f ‖2
2 = 1

2

∫
π(x)π(y)

[
f (y) − f (x)

]2 dx dy.

For the IMH, the following is known [20, 21].

PROPOSITION 26. If w is uniformly bounded from above, then the IMH sampler is uni-
formly ergodic. However, if w is not uniformly bounded above, then the chain is not even
geometrically ergodic.

Thus since we are interested in the case of subgeometric convergence, we assume that w

is not bounded from above, or equivalently, w−1 is not bounded from below by any positive
constant. Thus given any s > 0, we define the following sets:

A(s) := {
(x, y) ∈ E × E : w−1(x) ∧ w−1(y) ≥ 1/s

}
.

Since we are assuming the subgeometric case, there is no s > 0 for which A(s) = E × E.

PROPOSITION 27. For the IMH, we have the following weak Poincaré inequality: given
any f ∈ L2

0(π) and s > 0:

‖f ‖2
2 ≤ sE(P,f ) + π ⊗ π(A(s)�)

2
‖f ‖2

osc.

Our bound in Proposition 27 allows us to directly link the tail properties of the weights
w(x) under π and the resulting rates of subgeometric convergence. We can apply Theo-
rem 21, since the IMH kernel is always positive [18].

We turn now to some concrete examples inspired by [20, 21] where β(s) can be evaluated
directly.
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2.3.1. Exponential target and proposal case. We work on E = (0,∞) ⊂ R, and have
target and proposal densities

π(x) = a1 exp(−a1x), q(x) = a2 exp(−a2x).

Since we are interested in the subgeometric case, we assume that a2 > a1. For this example,
it was shown in [21], Proposition 9(b), that there is polynomial convergence, with rate at least
a1/(a2 − a1).

LEMMA 28. We have that for s ≥ 1,

π ⊗ π(A(s)�)

2
= 1

2

[
1 − (

1 − s
− a1

a2−a1
)2] ≤ s

− a1
a2−a1 .

In this case, we can make use of Lemma 14 to conclude the following, consistent with
[21], Proposition 9(b).

PROPOSITION 29. For our exponential example, we recover the convergence rate for
some C > 0,

∥∥P nf
∥∥2

2 ≤ C‖f ‖2
oscn

− a1
a2−a1 .

2.3.2. Polynomial target and proposal case. We take E = [1,∞) ⊂ R, and target and
proposal densities

π(x) = b1

x1+b1
, q(x) = b2

x1+b2
.

We are interested in subgeometric convergence, so assume that b2 > b1. It was shown in
[21], Proposition 9(a), that for this example there is polynomial convergence with rate at least
b1/(b2 − b1). An entirely analogous calculation to the exponential example above allows us
to conclude the following.

PROPOSITION 30. For our polynomial example, we obtain the convergence rate, for
some C > 0,

∥∥P nf
∥∥2

2 ≤ C‖f ‖2
oscn

− b1
b2−b1 .

3. Chaining Poincaré inequalities. In this section, we show how comparison of Dirich-
let forms can be used to deduce convergence properties of a given Markov chain from another
one. These results extend existing quantitative comparison results.

PROPOSITION 31. Let P1 and P2 be two μ-invariant Markov kernels. Let Ti = Pi or
Ti = P ∗

i Pi . Assume that for all s > 0 and f ∈ L2
0(μ),

CP‖f ‖2
2 ≤ E(T1, f ),

E(T1, f ) ≤ sE(T2, f ) + β ′(s)�(f ),

where:

1. CP > 0 and β ′ : (0,∞) → (0,∞) is decreasing and β ′(s) ↓ 0 as s → ∞,
2. � : L2(μ) → [0,∞] is such that (1) holds.
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Then for any s > 0,

‖f ‖2
2 ≤ sE(T2, f ) + β(s)�(f ),

with β(s) = β ′(CPs)/CP.

The proof is immediate.

REMARK 32. This generalises the comparison of Dirichlet forms used in [10], which
corresponds to β(s) = 0 for all s > s̄ for some s̄ > 0. Further, assume that for any (x,A) ∈
E × F , P2(x,A \ {x}) ≥ ε(x)P1(x,A \ {x}) for some ε : E → (0,1], then with {(x, y) ∈
E2 : ε(x)s > 1} and s > 0 we have

E(P1, f ) ≤ 1

2

∫
A(s)

ε(x)sμ(dx)P1(x,dy)
[
f (y) − f (x)

]2

+ 1

2

∫
A(s)�

μ(dx)P1(x,dy)
[
f (y) − f (x)

]2

≤ sE(P2, f ) + 1

2
μ

(
ε−1(X) ≥ s

)‖f ‖2
osc,

which is a generalisation of [10], Theorem A3, and together with Theorem 21 leads to a coun-
terpart of [10], Theorem A1, for rates of convergence. However, we have not found an elegant
generalisation of [10], Theorem A2, concerned with asymptotic variances. Theorem 36 fur-
ther generalises these comparison ideas.

This can be further extended to the scenario where T1 satisfies a weak Poincaré inequality.

THEOREM 33. Let P1 and P2 be two μ-invariant Markov kernels. Let Ti = Pi or Ti =
P ∗

i Pi . Assume that for all s > 0 and f ∈ L2
0(μ),

(9)
‖f ‖2

2 ≤ sE(T1, f ) + β1(s)�1(f ),

E(T1, f ) ≤ sE(T2, f ) + β2(s)�2(f ),

where:

1. β1, β2 : (0,∞) → (0,∞) are decreasing and β1(s), β2(s) ↓ 0 as s → ∞,
2. �1,�2 : L2(μ) → [0,∞] are such that (1) hold for P1 and P2, respectively,
3. for any n ∈ N and f ∈ L2

0(μ), �1(P
n
2 f ) ≤ �1(f ).

Then for any s > 0,

(10) ‖f ‖2
2 ≤ sE(T2, f ) + β(s)�(f ),

where � := �1 ∨ �2 and

β(s) := inf
{
s1β2(s2) + β1(s1)|s1 > 0, s2 > 0, s1s2 = s

}
.

Furthermore, β : (0,∞) → (0,∞) is monotone decreasing and satisfies β(s) ↓ 0 as s → ∞,
�(cf ) = c2�(f ) for c > 0 and �(P n

2 f ) ≤ �(f ) for any n ∈N and f ∈ L2
0(μ).

Additionally, writing Ki(u) = u · βi(1/u), K(u) = u · β(1/u), it holds that

K(u) = inf
{
K2(u2) + u2K1(u1)|u1 > 0, u2 > 0, u1u2 = u

}
,

K∗(v) = K∗
2 ◦ K∗

1 (v).
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PROOF. Fix s > 0. Given any s1, s2 > 0 with s1s2 = s, by direct substitution in (9), we
can arrive at

‖f ‖2
2 ≤ sE(T2, f ) + β1(s1)�1(f ) + s1β2(s2)�2(f )

≤ sE(T2, f ) + [
β1(s1) + s1β2(s2)

][
�1(f ) ∨ �2(f )

]
.

Taking an infimum, we arrive at (10).
Now we prove the monotonicity of β . Fix some s > 0 and any s1, s2 > 0 with s1s2 = s.

Given any s′ ≥ s, note that

β
(
s′) ≤ s1β2

(
s′/s1

) + β1(s1)

≤ s1β2(s/s1) + β1(s1)

= s1β2(s2) + β1(s1).

Here, we made use of the fact that β2 is a decreasing function. Taking an infimum over s1,
s2, we conclude that β(s′) ≤ β(s).

We now show that given ε > 0, we can find s > 0 such that β(s) ≤ ε. Combined with
monotonicity, this proves that β(s) ↓ 0 as s → ∞. So fix ε > 0. Choose s1 > 0 such that
β1(s1) ≤ ε/2, which can be done since β1(s) ↓ 0 as s → ∞. Given such an s1, now choose
s2 > 0 large enough so that s1β2(s2) ≤ ε/2. Thus for s := s1s2 for these choices of s1, s2, we
have shown that β(s) ≤ ε/2 + ε/2 = ε.

To complete the proof, write

K(u) = u · β(1/u)

= u · inf
{
s1β2(s2) + β1(s1)|s1 > 0, s2 > 0, s1s2 = 1/u

}
= u · inf

{
(1/u1) · β2(1/u2) + β1(1/u1)|1/u1 > 0,1/u2 > 0, (1/u1) · (1/u2) = 1/u

}
= inf

{
(u/u1) · β2(1/u2) + (u1u2) · β1(1/u1)|u1 > 0, u2 > 0, u1u2 = u

}
= inf

{
u2β2(1/u2) + u2 · u1β1(1/u1)|u1 > 0, u2 > 0, u1u2 = u

}
= inf

{
K2(u2) + u2 · K1(u1)|u1 > 0, u2 > 0, u1u2 = u

}
,

as claimed. Finally,

K∗(v) := sup
u≥0

{
uv − K(u)

}

= sup
u≥0

{
uv − inf

u1,u2

{
K2(u2) + u2 · K1(u1)

}}

= sup
u,u1,u2

{
uv − K2(u2) − u2 · K1(u1)

}
,

where u1,u2 are again constrained to be nonnegative and have their product equal to u. Now,
rewrite u = u1u2 and eliminate the variable u to write

K∗(v) = sup
u1,u2>0

{
u1u2v − K2(u2) − u2 · K1(u1)

}
= sup

u1,u2>0

{
u2 · {

u1v − K1(u1)
}
v − K2(u2)

}

= sup
u2>0

{
u2 · sup

u1>0

{
u1v − K1(u1)

} − K2(u2)
}
.

Taking the inner supremum simplifies this expression to

K∗(v) = sup
u2>0

{
u2 · K∗

1 (v) − K2(u2)
}
,
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and taking the remaining supremum allows us to conclude that K∗(v) = K∗
2 (w) with w =

K∗
1 (v) as claimed, that is, K∗ = K∗

2 ◦ K∗
1 . �

EXAMPLE 34. If one has βi(s) = cis
−αi for i ∈ {1,2}, then β(s) ∝ s−α∗ with α∗ =

α1α2
1+α1+α2

. To see this, write

β(s) := inf
{
s1β2(s2) + β1(s1)|s1 > 0, s2 > 0, s1s2 = s

}
= inf

{
c2s1s

−α2
2 + c1s

−α1
1 |s1 > 0, s2 > 0, s1s2 = s

}
= inf

{
c2s1

(
s1

s

)α2 + c1s
−α1
1

∣∣∣s1 > 0
}

= inf
{
c2s

−α2s
1+α2
1 + c1s

−α1
1 |s1 > 0

}
.

Taking derivatives and solving for a stationary point gives ŝ1 = c1α1
c2(1+α2)

s
α2

1+α1+α2 , from which
point routine algebraic manipulations confirm the conclusion.

Our next main result is Theorem 36, which provides us with a practical way of establishing
(9) for Ti = Pi . We first establish an intermediate result.

PROPOSITION 35. Let P be a μ-invariant Markov kernel, and let A ∈ F ⊗ F . Let p ∈
(1,∞], q ≥ 1 satisfy p−1 + q−1 = 1. Then one can bound for f ∈ L2(μ),∫

A
μ(dx)P (x,dy)

(
f (x) − f (y)

)2 ≤ μ ⊗ P
(
A ∩ {X = Y })1/q · �p(f ),

with �p given by

(11) �p(f ) :=
{

4‖f ‖2
2p p ∈ (1,∞),

‖f ‖2
osc p = ∞.

Moreover, it holds that for all f ∈ L2(μ) and p ∈ [1,∞], �p(Pf ) ≤ �p(f ).

PROOF. For p ∈ (1,∞), we use Hölder’s inequality to write∫
A

μ(dx)P (x,dy)
(
f (x) − f (y)

)2

=
∫

μ(dx)P (x,dy)
{
IA∩{x =y}(x, y) · (

f (x) − f (y)
)2}

≤
(∫

μ(dx)P (x,dy)IA∩{x =y}(x, y)

)1/q

·
(∫

μ(dx)P (x,dy)
∣∣f (x) − f (y)

∣∣2p
)1/p

.

By Jensen’s inequality, one can check that |f (x) − f (y)|2p ≤ 22p−1 · (|f (x)|2p + |f (y)|2p).
Because μP = μ,∫

μ(dx)P (x,dy)
∣∣f (x) − f (y)

∣∣2p ≤ 22p−1 ·
∫

μ(dx)P (x,dy) · (∣∣f (x)
∣∣2p + ∣∣f (y)

∣∣2p)
= 22p · ‖f ‖2p

2p.

One then concludes that∫
A

μ(dx)P (x,dy)
(
f (x) − f (y)

)2 ≤ μ ⊗ P(A)1/q · (
22p · ‖f ‖2p

2p

)1/p

= μ ⊗ P(A)1/q · �(f ),
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as desired. The nonexpansivity of � under the action of P can be deduced by writing

‖Pf ‖2p
2p =

∫
μ(dx)

∣∣Pf (x)
∣∣2p

=
∫

μ(dx)

∣∣∣∣
∫

P(x,dy)f (y)

∣∣∣∣2p

≤
∫

μ(dx)P (x,dy)
∣∣f (y)

∣∣2p

=
∫

μ(dy)
∣∣f (y)

∣∣2p

= ‖f ‖2p
2p,

where the inequality uses Jensen’s inequality against the probability measure P(x, ·), and the
penultimate equality uses the μ-invariance of P .

When p = ∞, we use an analogous argument, noting that (f (x)−f (y))2 ≤ ‖f ‖2
osc almost

everywhere. �

THEOREM 36. Let P1 and P2 be two μ-invariant Markov kernels. Assume that for any
(x,A) ∈ E ×F , P2(x,A \ {x}) ≥ ∫

A\{x} ε(x, y)P1(x,dy) for some ε : E2 → (0,∞). Then for

any p ∈ (1,∞], q ≥ 1 such that p−1 + q−1 = 1, any s > 0, and any f ∈ L2p
0 (μ) ⊂ L2

0(μ),

E(P1, f ) ≤ sE(P2, f ) + 1

2
· μ ⊗ P1

(
A(s)� ∩ {X = Y })1/q

�p(f ),

with A(s) := {(x, y) ∈ E2 : sε(x, y) > 1} and �p(f ) as in (11), which satisfies (1).

PROOF. For any s > 0, we have

E(P1, f ) ≤ 1

2

∫
A(s)

sε(x, y)μ(dx)P1(x,dy)
[
f (y) − f (x)

]2

+ 1

2

∫
A(s)�

μ(dx)P1(x,dy)
[
f (y) − f (x)

]2

≤ s

2

∫
A(s)

μ(dx)P2(x,dy)
[
f (y) − f (x)

]2

+ 1

2
·μ ⊗ P1

(
A(s)� ∩ {X = Y })1/q

�p(f ),

where we have used the assumed inequality between P1 and P2 and Proposition 35. �

REMARK 37. Assume for simplicity that for μ-almost all x, P1(x, ·) ≡ P2(x, ·), that is,
P1(x, ·) and P2(x, ·) are equivalent measures. This implies μ ⊗ P1 ≡ μ ⊗ P2 and we may
take ε(x, y) = dP2(x,·)

dP1(x,·) (y) = dμ⊗P2
dμ⊗P1

(x, y) to be positive μ ⊗ P1-almost everywhere, and we
can write

A(s)� ∩ {
(x, y) : x = y

} =
{
(x, y) ∈ E2 : I{x = y}dμ ⊗ P1

dμ ⊗ P2
(x, y) ≥ s

}
.

Hence, lims→∞ μ ⊗ P1(A(s)� ∩ {X = Y }) = 0. Therefore, Theorem 36 covers many cases
where P2 places mass on the same sets as P1. In fact, it covers slightly more general cases
in which we only have P1(x,A \ {x}) > 0 ⇒ P2(x,A \ {x}) > 0 for μ-almost all x and all
A ∈ F .
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REMARK 38. Our result concerned with the IMH algorithm in Section 2.3 is a partic-
ular case where PIMH(x,A \ {x}) ≥ ∫

A\{x}[w−1(x) ∧ w−1(y)]π(dy), which combined with
Proposition 31 with CP = 1 leads to Proposition 27.

REMARK 39. We note that this approach to identifying weak Poincaré inequalities can
also be generalised to the setting of continuous-time Markov processes. To this end, consider
a continuous-time Markov process with infinitesimal generator L, and recall the definition of
the carré du champ operator

(f,g)(x) := 1

2

{
L(fg) − (Lf ) · g − f · (Lg)

}
.

Note that  is bilinear and that for all suitable functions f , the function (f ) := (f,f ) is
pointwise nonnegative.

Suppose now that for two processes with the same invariant measure π and infinitesimal
generators given by L1 and L2, respectively, their carré du champ operators can be ordered
pointwise as

1(f )(x) ≥ w(x) · 2(f )(x)

for some nonnegative function w (note that the subscripts here simply index the processes,
and have no relation to so-called “iterated carré du champ” operators).

Defining A(s) = {x : s · w(x) ≥ 1}, one can then compute that

E(L2, f ) =
∫

μ(dx) · 2(f )(x)

≤ s ·
∫
A(s)

μ(dx) · w(x) · 2(f )(x) +
∫
A(s)�

μ(dx) · 2(f )(x)

≤ s ·
∫

μ(dx) · 1(f )(x) + π
(
A(s)�

) · sup
x∈E

{
2(f )(x)

}
= s · E(L1, f ) + β(s) · �(f ),

where we have defined

β(s) := μ
(
A(s)�

)
,

�(f ) := sup
x∈E

{
2(f )(x)

}
.

Note that in many applications, (f ) has the character of a squared gradient, and hence �(f )

will behave much like a squared Lipschitz constant for the function f .
Comparisons of this form have been used implicitly in the study of so-called weighted and

converse weighted Poincaré inequalities [8, 11], which are known to imply weak Poincaré
inequalities. Such comparison inequalities can then be applied to compare the convergence
of continuous-time processes in much the same fashion as in this work.

The following generalises the criterion P(x, {x}) ≥ ε for some ε > 0 and all x ∈ E often
used to establish the existence of a left spectral gap for reversible Markov chains.

THEOREM 40. Assume that P is μ-invariant and that for any (x,A) ∈ E ×F it satisfies
P(x,A) ≥ ε(x)

∫
A δx(dy) for some ε : E → [0,1]. Then:

1. for any (x,A) ∈ E ×F , P 2(x,A) ≥ ε(x)P (x,A),
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2. for any p ∈ (1,∞], 1/q = 1 − 1/p, any f ∈ L2p
0 (μ) ⊂ L2

0(μ) and s > 0

E(P,f ) ≤ sE
(
P 2, f

) + 1

2
·μ(

ε(X)−1 ≥ s
)1/q

�p(f ).

COROLLARY 41. Proposition 31 or Theorem 33 can be applied with T1 = P1 = P and
T2 = P2 = P 2. This can be applied to the Metropolis–Hastings (MH) algorithm (see (12))
as soon as μ(ρ(X) > 0) = 1 and also means that weakly lazy chains can be defined as
ε(x)Id + (1 − ε(x))P̌ where P̌ is a MH using proposal P .

PROOF OF THEOREM 40. For (x,A) ∈ E ×F ,

P 2(x,A) =
∫

P(x,dy)P (y,A) ≥ ε(x)P (x,A)

and we apply Theorem 36. Now μ ⊗ P({ε(X)−1 ≥ s} ∩ {X = Y }) ≤ μ(ε(X)−1 ≥ s) and we
conclude. �

Our final result in this section concerns the situation when one has a sequence of weak
Poincaré inequalities given by functions {β2,ι}ι>0, which converge pointwise to an appropri-
ate function β1. We give conditions under which the corresponding convergence rates F−1

2,ι

will also converge to the corresponding F−1
1 .

PROPOSITION 42. Let P1 and (P2,ι)ι>0 be μ-invariant Markov kernels. Assume P1 sat-
isfies a weak Poincaré inequality with function β1 and that for any ι > 0,

‖f ‖2
2 ≤ sE

(
P ∗

2,ιP2,ι, f
) + β2,ι(s)�(f ) ∀s > 0,

where each β2,ι satisfies the conditions in Definition 4. Let F1,F2,ι : (0, a] → [0,∞) for each
ι > 0 be as defined in Section 2.

Assume that for any ι > 0, β2,ι ≥ β1 pointwise and for any s > 0, limι→0 β2,ι(s) = β1(s).
Then for any ι > 0 and n ∈ N, F−1

2,ι (n) ≥ F−1
1 (n) and

lim
ι→0

sup
n≥0

{
F−1

2,ι (n) − F−1
1 (n)

} = 0.

PROOF. Let v > 0 and (un) be such that K∗
1 (v) = limn→∞ un[v − β1(1/un)]. Then for

any ι > 0 and any n ≥ 1, K∗
2,ι(v) ≥ un[v − β2,ι(1/un)] and, therefore,

lim inf
ι→0

K∗
2,ι(v) ≥ lim

ι→0
un

[
v − β2,ι(1/un)

] = un

[
v − β1(1/un)

]
.

Consequently,

lim inf
ι→0

K∗
2,ι(v) ≥ lim

n→∞un

[
v − β1(1/un)

] = K∗
1 (v).

Since for any ι > 0, β2,ι ≥ β1 implies K∗
2,ι ≤ K∗

1 , we have lim supι→0 K∗
2,ι(v) ≤ K∗

1 (v).
We therefore conclude that limι→0 K∗

2,ι(v) = K∗
1 (v). Now let 0 < x ≤ a, and choose ε > 0

such that K1(x) − ε > 0. Then there exists ι0 > 0 such that, for any 0 < ι ≤ ι0, K∗
2,ι(x) ≥

K1(x) − ε > 0, and since v 
→ K∗
2,ι(v) is increasing, we deduce 0 < supv∈[x,a](K∗

2,ι(v))−1 ≤
(K∗

2,ι(x))−1 ≤ (K∗
1 (x) − ε)−1 < ∞. We can therefore apply the bounded convergence theo-

rem and conclude

lim
ι→0

∫ a

x

dv

K∗
2,ι(v)

= F1(x).
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For any ι > 0, F1,F2,ι : (0, a] → [0,∞) are decreasing and continuous and so are the
inverse functions F−1

1 ,F−1
2,ι : [0,∞) → (0, a], and consequently for any x ∈ [0,∞),

limι→0 F−1
2,ι (x) = F−1

1 (x) (note that F−1
2,ι (0) = F−1

1 (0) = a). Since K∗
2,ι ≤ K∗

1 , we imme-

diately have the ordering F−1
2,ι (x) ≥ F−1

1 (x) for any x ∈ [0,∞).

Now let ε > 0, then there exists n0 ∈ N such that for any n ≥ n0, F−1
1 (n) ≤ ε/2. From the

convergence above, there exists ι0 > 0 such that, for any 0 < ι ≤ ι0,

0 ≤ F−1
2,ι (n0) − F−1

1 (n0) ≤ ε/2,

and since n 
→ F−1
2,ι (n) is decreasing, for any n ≥ n0,

F−1
2,ι (n) − F−1

1 (n) ≤ F−1
2,ι (n) ≤ ε.

Now, there exists ι′0 > 0 such that, for any 0 < ι < ι′0,

max
0≤n<n0

{
F−1

2,ι (n) − F−1
1 (n)

} ≤ ε.

Therefore,

lim
ι→0

sup
n≥0

{
F−1

2,ι (n) − F−1
1 (n)

} = 0. �

EXAMPLE 43. Let β1(s) = aI{s ≤ C−1
P }, which corresponds to P1 satisfying a strong

Poincaré inequality as in Remark 11. Let P2,ι satisfy a weak Poincaré inequality with
β2,ι(s) = a∧{β ′

ι (CPs)/CP} (e.g., by Proposition 31) where β ′
ι (s) ≥ I{s ≤ 1} so that β2,ι ≥ β1.

If limι→0 β ′
ι (s) = I{s ≤ 1} for all s > 0, then Proposition 42 can be applied and we re-

cover exponential convergence as ι → 0, and for any ε > 0 the existence of ι > 0, such
that F−1

2,ι (n) − F−1
1 (n) < ε for all n. In other words, one may obtain convergence for P2

arbitrarily close to that given by β1 by taking ι sufficiently small.

4. Application to pseudo-marginal methods. We now present our main application.
Fix a probability distribution π on a measure space X, with a density function also denoted
π . Pseudo-marginal algorithms [3] extend the scope of the Metropolis–Hastings algorithms to
the scenario where the density π is intractable, but for any x ∈ X, nonnegative estimators π̂(x)

such that E[π̂(x)] = Cπ(x) for some constant C > 0 are available. This can be conveniently
formulated as π̃ (dx,dw) = π(dx)Qx(dw)w = π(dx)π̃x(dw) with

∫
R+ wQx(dw) = 1 on an

extended space E := X ×R+. We will refer to these auxiliary w random variables as weights
or perturbations.

4.1. A weak Poincaré inequality for pseudo-marginal chains. A question of interest is to
characterise the degradation in performance, compared to the marginal algorithm, which uses
the exact density π . More specifically, for {q(x, ·), x ∈ X} a family of proposal distributions,
the marginal algorithm is described by the kernel

(12)

P(x,dy) = [
1 ∧ r(x, y)

]
q(x,dy) + δx(dy)ρ(x),

where r(x, y) := π(y)q(y,dx)

π(x)q(x,dy)
,

and ρ is the rejection probability given by ρ(x) := 1 − ∫ [1 ∧ r(x, y)]q(x,dy) for each x ∈ X.
For brevity, we will also define the acceptance probability as a(x, y) := [1 ∧ r(x, y)].

The pseudo-marginal Metropolis–Hastings kernel is given by

P̃ (x,w;dy,du) =
[
1 ∧

{
r(x, y)

u

w

}]
q(x,dy)Qy(du) + δx,w(dy,du)ρ̃(x,w),
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where the (joint) rejection probability ρ̃(x,w) is analogously defined. It is known in this
context that perturbing the acceptance ratio of the marginal algorithm leads to a loss in per-
formance, in particular in terms of convergence rates to equilibrium. More specifically, if P is
geometrically ergodic, then P̃ is geometrically ergodic if the perturbations are bounded uni-
formly in x, and cannot be geometrically ergodic if the perturbations are unbounded on a set
of positive π -probability, which addressed in [4] in specific scenarios using Foster–Lyapunov
and minorisation conditions by linking the existence of moments of the perturbations to the
subgeometric rate of convergence of the algorithm. When the perturbations are bounded for
each x but not bounded uniformly in x, the situation is more complicated: if “local proposals”
are used then [24] proves that P̃ cannot be geometric under fairly weak assumptions in statis-
tical applications whereas if global proposals are used P̃ may still be geometric (consider, for
instance, the setting of [12], Remark 5). We show here that convergence results can be made
completely general using weak Poincaré inequalities, with much simpler and considerably
more transparent arguments.

We will be assuming throughout this section that the pseudo-marginal kernel P̃ is positive,
in order to utilise our results from Section 2.2.1. We note that this positivity assumption is not
restrictive; as established in [4], Proposition 16, P̃ will be positive if the marginal chain P is
an Independent MH sampler, or a random walk Metropolis kernel with multivariate Gaussian
or student-t increments.

The following comparison theorem plays a central role.

THEOREM 44. Let P̄ be the embedding of P in the joint space E = X ×R+,

P̄ (x,w;dy,du) := a(x, y)q(x,dy)π̃y(du) + δx,w(dy,du)ρ(x).

Then for any p ∈ (1,∞], q ≥ 1 such that p−1 + q−1 = 1, any s > 0, and any f ∈ L2p(π̃) ⊂
L2

0(π̃),

E(P̄ , f ) ≤ sE(P̃ , f ) + 1

2
·�p(f )

(
2

∫
X
π̃x(w ≥ s)π(dx)

)1/q

,

with �p(f ) given in (11).

PROOF. We apply Theorem 36. Let ε(w,u) := w−1 ∧ u−1, then for any (x,w) ∈ E and
B ∈ F , ∫

B\{x,w}
ε(w,u)P̄ (x,w;dy,du)

=
∫
B

q(x,dy)π̃y(du)a(x, y)
(
w−1 ∧ u−1)

=
∫
B

q(x,dy)Qy(du)ua(x, y)
(
w−1 ∧ u−1)

=
∫
B

q(x,dy)Qy(du)a(x, y)

(
1 ∧ u

w

)

≤
∫
B

q(x,dy)Qy(du)

[
1 ∧

(
r(x, y)

u

w

)]
,

= P̃
(
x,w;B \ {x,w}),

where we have used that 1 ∧ (ab) ≥ (1 ∧ a)(1 ∧ b) for a, b ≥ 0. Now for s > 0 let

A(s) := {
(w,u) ∈ R

2+ : w−1 ∧ u−1 > 1/s
}
,

Ā(s) := {
(x,w,y,u) ∈ E × E : w−1 ∧ u−1 > 1/s

}
.
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Then

μ ⊗ P̄
(
Ā�(s) ∩ {

(X,W) = (Y,U)
}) ≤

∫
Ā(s)�

a(x, y)π(dx)q(x,dy)π̃x(dw)π̃y(du)

=
∫

X2

[
a(x, y)

∫
A(s)�

π̃x(dw)π̃y(du)

]
π(dx)q(x,dy),

and ∫
A(s)�

π̃x(dw)π̃y(du) = 1 − π̃x(w ≤ s)π̃y(u ≤ s)

= 1 − [
1 − π̃x(w > s)

][
1 − π̃y(u > s)

]
≤ π̃x(w ≥ s) + π̃y(u ≥ s).

Therefore,

μ ⊗ P̄
(
Ā(s)� ∩ {

(X,W) = (Y,U)
}) ≤ 2

∫
π̃x(w ≥ s)π(dx).

We conclude. �

We are now in a position to apply Proposition 31 or Theorem 33. We will see that the
tail behaviour of the perturbations governs the rate at which our bound on ‖P̃ nf ‖2 vanishes
as n → ∞. For simplicity, for the remainder of this section we focus on the case where
�(f ) = ‖f ‖2

osc.

COROLLARY 45. When P̄ satisfies a strong Poincaré inequality with constant CP as in
Remark 3, Proposition 31 establishes that P̃ satisfies Definition 17 with β(s) = β ′(CPs)/CP

where β ′(s) = ∫
π̃x(w ≥ s)π(dx) and �(f ) = ‖f ‖2

osc. Consequently, Theorem 21 applies to
P̃ with a rate determined by β(s).

Furthermore, using Markov’s inequality, the existence of moments of W under π̃x of order
k ∈N∗ implies

β ′(s) ≤ s−k
∫

X
Eπ̃x

[|W |k]π(dx).

Provided the integral is finite, this leads to a polynomial rate of convergence O(n−k) by
Lemma 14.

Similarly, if P̄ satisfies a weak Poincaré inequality, one can apply Theorem 33 and deduce
the new rate of convergence as in Example 34.

REMARK 46. Notice that when the perturbations are uniformly bounded, that is, there
exists w̄ such that, for all x ∈ X, π̃x(w ≥ w̄) = 0, and P̄ satisfies a strong Poincaré inequality,
then CP‖f ‖2 ≤ E(P̄ , f ) ≤ w̄E(P̃ , f ) and we recover the known results of [3, 4].

Examples of chains for which P̄ satisfies a strong Poincaré inequality are numerous; the
IMH and random walk Metropolis algorithms often possess a spectral gap; see [4] where
these examples are considered in the context of pseudo-marginal algorithms.

We provide a general result demonstrating that under very weak conditions pseudo-
marginal convergence can be made arbitrarily close to marginal convergence, strengthening
the result of [3], Section 4.
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REMARK 47. Assume that there is a parameter ι > 0 controlling the quality of the per-
turbations W ∼ π̃x,ι such that, for each x ∈ X, W converges in probability to 1 as ι → 0:

lim
ι→0

π̃x,ι(w ≥ s) = I{s ≤ 1}, x ∈ X, s > 0.

Let

βι(s) :=
∫

X
π̃x,ι(w ≥ s)π(dx),

then the bounded convergence theorem implies that

lim
ι→0

βι(s) = I{s ≤ 1}, s > 0.

Assume now that P̄ satisfies a weak Poincaré inequality with function β̄ . Similar to Exam-
ple 43, one can compare the convergence bounds for P̃ι and P̄ via their respective functions
β̃ι and β̄ . Indeed, Theorem 44 and Theorem 33 imply that P̃ι satisfies a weak Poincaré in-
equality with function

β̃ι,ε(s) = s

1 + ε
βι(1 + ε) + β̄

(
s

1 + ε

)
,

where ε > 0 is arbitrary. Note that for s > 0, β̃ι,ε(s) ≥ β̄(s/(1 + ε)) ≥ β̄(s) and since
limι→0 β̃ι(s) = β̄(s/(1 + ε)) we can apply Proposition 42 to obtain convergence bounds ar-
bitrarily close to those of P̄ with rate function β̄ .

4.2. The effect of averaging. A natural idea to reduce the variability of pseudo-marginal
chains is to average several estimators π̂ of the target density at each iteration. As pointed out
in [4], this is unlikely to affect asymptotic rates of convergence. Furthermore, it was estab-
lished in [9, 31] that when considering asymptotic variance, it is preferable to combine the
output of N independent chains each using 1 estimator, rather than running 1 chain averaging
N estimators at each iteration. The following, motivated by the application of Markov’s in-
equality, adds nuance to these conclusions by showing how bias can be reduced by averaging,
particularly in situations where higher order moments of the perturbations are large.

LEMMA 48. Let {Wi} be i.i.d., of expectation 1 and such that, for a given p ∈ N with
p ≥ 2, E(|W1|p) < ∞. Then there are some constants {Cp,k}, such that, for any N ∈ N,

(13) E

[∣∣∣∣∣ 1

N

N∑
i=1

Wi

∣∣∣∣∣
p]

≤ 1 +
p∑

k=2

N−k/2Cp,kE
[|W1 − 1|k].

For large N , this bound is 1 + O(N−1).

As an illustration, we focus here on the scenario where the marginal chain satisfies a
strong Poincaré inequality (Remark 3) and the moments are uniformly bounded in x ∈ X.
Let WN := N−1 ∑N

i=1 Wi , then Markov’s inequality implies that for the pseudo-marginal
algorithm which averages N estimators,

β ′
N(s) ≤

[
sup
x∈X

Eπ̃x

(
Wp

N

)]
s−p,

and while the rate of convergence in s is independent of N , the multiplicative constant in
square brackets does depend on N . Indeed, by Lemma 48, averaging by choosing N > 1 can
reduce its magnitude and reduce our convergence upper bounds in Theorem 21, thanks to
Lemma 13. The bound obtained in (13) suggests that while the asymptotic rate of decay for
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large N is governed by the term E[|W1 − 1|2]N−1, inversely proportional to the increased
computational cost at each MCMC iteration, higher order moments may play an important
role for small to moderate values of N .

This is expected for heavy-tailed distributions, for example, consider an inverse gamma
distribution of expectation 1 and shape parameter s > 1. Its raw (polynomial) moments grow
very rapidly as E(Wk

1 ) = (s − 1)k/
∏k

i=1(s − i) for k ∈ N, k < s and s large, and for small
and moderate values of N , summands other than k = 2 in (13) will be most prominent.

4.3. ABC example. We consider an Approximate Bayesian Computation (ABC) set-
ting, using notation inspired by [24]. We assume we have a true posterior density π0(x) ∝
ν(x)�y(x) on a space X ⊂ R

dx , where ν(·) represents the prior and x 
→ �y(x) is an intractable
likelihood corresponding to a probability density fx(y) = �y(x) for some fixed observations
y ∈ Y ⊂ R

d. It is known that ABC Markov chains of the type considered here cannot be
geometrically ergodic under fairly weak conditions when a “local proposal” is used [24],
Theorem 2.

Fix an ε > 0 and x ∈ X, and for j = 1, . . . ,N , let zj
i.i.d.∼ fx(·) be auxiliary random vari-

ables and define the random variables Wj , where | · | denotes the Euclidean norm,

Wj =
{

1/�ABC(x) if |zj − y| < ε,

0 else,

with �ABC(x) := Px(|z1 − y| < ε). In an ABC setup, the intractable π0 is replaced with the
ABC posterior π(x) ∝ ν(x)�ABC(x), which is typically also intractable and itself approxi-
mated using a pseudo-marginal approach: for fixed N ∈ N, define

π̃(x, z1, . . . , zN) ∝ ν(x)�ABC(x)

[
N∏

j=1

fx(zj )

]
· 1

N

N∑
j=1

Wj.

It is easily seen that WN := 1
N

∑N
j=1 Wj has expectation 1 under [∏N

j=1 fx(zj )]dz1 × · · · ×
dzN for a fixed x ∈ X. In our previous notation, Qx(dw) is then the law of WN when the
(z1, . . . , zN) are drawn from [∏N

j=1 fx(zj )]dz1 ×· · ·×dzN , and π̃x(dw) = wQx(dw). Given

x ∈ X, it is clear that under Qx , we have that �ABC(x)
∑N

j=1 Wj ∼ Bin(N, �ABC(x)).
Thus from our previous result, Corollary 45, in order to bound the rate of convergence of

the resulting pseudo-marginal algorithm, we need to bound for s > 0,∫
X
π(dx)π̃x(WN ≥ s).

So given x ∈ X, s > 0, we first consider π̃x(WN ≥ s). Using Markov’s inequality, for any
p ∈ N, we can bound

π̃x(WN ≥ s) ≤ π̃x[Wp
N ]

sp
= Qx[Wp+1

N ]
sp

.

This seems to suggest that if the marginal algorithm is geometrically ergodic, then its ABC
approximation converges at any polynomial rate. The following result tells us that this may
not be the case.

PROPOSITION 49. For a given p ∈ N, suppose that
∫

X ν(x)�
−(p−1)
ABC (x)dx < ∞. Then

there is CN,p > 0 such that, for all s > 0,∫
X
π(dx)π̃x(WN ≥ s) ≤ CN,ps−p,

and as N → ∞, CN,p = 1+O(1/N). In particular, we may always take p = 1. The resulting
convergence rate for the pseudo-marginal chain is then also O(n−p) as in Lemma 14.
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4.4. Products of averages. The results in Sections 4.2–4.3 suggest that N may not need
to be taken too large in the case of simple averaging. We consider here a scenario where the
perturbation is instead a product of T independent averages, which gives different conclu-
sions, and can be seen as a simple version of the perturbation involved in a particle marginal
Metropolis–Hastings (PMMH) algorithm [1], a special case of a pseudo-marginal algorithm.
Such scenarios can arise in random effects and latent variable models. For example, [34], Sec-
tion 4.1, uses a random effects model from [14], Section 6.1, to analyse the data from [19],
while [25], Section 4.2, considers an ABC example with i.i.d. data and [25], Section 4.3,
considers a single-cell gene expression model proposed by [27] and employed, for example,
by [33].

The following bound can be used in Corollary 45, and indicates that it is sufficient to take
N proportional to T to obtain T -independent bounds on the relevant tail probabilities as long
as π is sufficiently concentrated.

PROPOSITION 50. Assume W ∼ Qx can be written as W = ∏T
t=1 Wt , where each Wt is

independent and nonnegative, and for each t ∈ {1, . . . , T },

Wt = 1

N

N∑
i=1

Wt,i,

is an average of nonnegative, identically distributed random variables with mean 1. Assume
that for some p ∈ N with p ≥ 2, and any x ∈ X,

max
t∈{1,...,T }E

[
W

p
t,1

]
< ∞.

Then there exists a function Mp : X →R+ such that if we take

N ≥ αT + 1

2
+ √

αT ,

for some α > 0, then∫
π(dx)π̃x(W ≥ s) ≤ s−p+1

∫
π(dx) exp

(
Mp(x)

α

)
,

where the right-hand side may be finite or infinite depending on π .

In particular, we can see that if the function Mp grows quickly in the tails of π , then the
bound is finite only if π has sufficiently light tails.

EXAMPLE 51. Assume Mp(x) = bxk and π(dx) ∝ IR+(x) exp(−cx�)dx for some k, � ≥
0. If � < k then the integral

∫
π(dx) exp(Mp(x)/α) in Proposition 50 is infinite. If � > k, then

the integral is finite. If � = k, then the integral is finite if and only if α > b/c.

4.5. Log-normal example. We consider now a limiting case of the perturbations in a
PMMH algorithm, motivated by [7], Theorem 1.1, which has also been analysed using other
techniques [16, 32]. The result of [7] concerns a particular mean 1 perturbation WT,N that is
also a product of T averages, with N random variables involved in each average, but where
the random variables are not independent. They show that, under regularity conditions, if
N = αT there is a σ 2

0 such that with σ 2 = σ 2
0 /α, log(WT,N) converges in distribution to

N(−1
2σ 2, σ 2) as T → ∞.
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We consider here the setting where for some large T , the log-perturbation is exactly
N(−1

2σ 2, σ 2), in which case one can think of σ 2 = σ 2
0 T/N , and since the precise value

of T is not relevant we suppress it in the sequel. To be explicit, we have that W has law

Qx(dw) = 1

wσ
√

2π
exp

(
−(logw + σ 2/2)2

2σ 2

)
dw,

where dw is Lebesgue measure on R+ and σ > 0 is a variance parameter, which we assume
for simplicity is independent of x. We note that a pseudo-marginal kernel with log-normal
perturbations can only converge subgeometrically, since the perturbations are not bounded.

4.5.1. Tail probabilities and convergence bound.

LEMMA 52. We have the bound, for s > 0, π̃x(W ≥ s) ≤ β(s), where

(14) β(s) := exp
(
−((log s − σ 2/2)+)2

2σ 2

)
.

REMARK 53. Note that despite (14) being an upper bound on the quantity of interest, it
satisfies the conditions in Example 43 and Remark 47, implying that the rate of convergence
of the marginal algorithm is recovered in the limit, as σ → 0.

Although it is theoretically possible to work directly with β as in (14), in order to derive
clean and practically useful tuning guidelines, we now derive some tractable bounds on the
corresponding convergence rate.

LEMMA 54. We have a lower bound on the convex conjugate, for 0 < v < 1, K∗(v) ≥
v
2 exp(−σ

√
−2 log v

2 − σ 2/2).

PROOF. This is immediate from choosing u = exp(−σ
√

−2 log v
2 − σ 2/2) in the defini-

tion of the convex conjugate, K∗(v) = supu>0{uv − uβ(1/u)}. �

As before, we define F(w) := ∫ 1
w

dv
K∗(v)

. We are able to deduce the following convergence
bound.

LEMMA 55. We have the upper bound for x > 0,

(15) F−1(x) ≤ 2 exp
{
− 1

2σ 2 W2
(

xσ 2

2 exp(σ 2/2)

)}
,

where W2 denotes the Lambert function squared.

PROPOSITION 56. Assume that the marginal chain P̄ satisfies a strong Poincaré in-
equality with constant CP as in Remark 3. Then the final convergence bound for the pseudo-
marginal chain is given by

(16) F−1
PM(n) ≤ 2

CP
exp

{
− 1

2σ 2 W2
(

CPnσ 2

2 exp(σ 2/2)

)}
.

PROOF. This is immediate from Corollary 45, Lemma 55. �
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4.5.2. Mixing times. It is possible to obtain mixing time type results.

PROPOSITION 57. Let ε ∈ (0,1] and σ 2 > 0. Then, to obtain F−1
PM(n) ≤ ε2, it is sufficient

to take

(17) n ≥ 2
√

H(ε)

CPσ
exp

(
σ 2

2
+ √

H(ε)σ

)
,

where H(ε) = 2 log(2/(ε2CP)).

PROOF. One can calculate directly that the bound of F−1
PM in (15) evaluated at the right-

hand side of (17) is equal to 2 exp(−H(ε)/2)/CP, which combined with the definition of
H(ε) and the monotonicity of F−1

PM gives the result. �

Now we consider the minimum computational budget required to achieve a given precision
of ε, and the corresponding split between the number of MCMC iterations n and the number
of particles N . The budget required is significantly lower than the result in Proposition 57
would imply for a fixed N and, therefore, σ 2.

PROPOSITION 58. Let ε ∈ (0,1]. For simplicity, let n̄ and N̄ be real-valued counterparts
of n and N , respectively. The “budget” function (n̄, σ̄ ) 
→ B(n̄, σ̄ ) = n̄N̄ = n̄σ 2

0 /σ̄ 2 on R
2+

is minimised subject to the constraint F−1
PM(n̄; σ̄ ) = ε2 (with F−1

PM as in (15)) when

σ̄ = σ̄�(ε) :=
√

H(ε) + 12 − √
H(ε)

2
,

where H(ε) := 2 log( 2
CPε2 ) > 0 and limH(ε)→∞

√
H(ε)σ̄�(ε) = 3. Moreover, for ε > 0 such

that H(ε) ≥ 1, we obtain F−1
PM(n̄; σ̄ ) = ε2 with σ̄ (ε) = 3/

√
H(ε),

N̄(ε) = 2

9
σ 2

0 log
(

2

CPε2

)
,

n̄(ε) ≤ 4 exp(15/2)

3CP
log

(
2

CPε2

)
,

B(ε) ≤ 8σ 2
0 exp(15/2)

27CP
log

(
2

CPε2

)2
,

which is asymptotically accurate and optimal as H(ε) → ∞, that is, if ε ↓ 0 or CP ↓ 0,
except that the constant factors exp(15/2) will tend to exp(3).

These nonasymptotic results take into account both CP and σ 2
0 in a natural manner and

are easily interpretable. We note that they also indicate how a given computational budget B
should be split between N and n in order to achieve best precision: in particular N should
increase as B increases. This is to be contrasted with results (see [16, 32] and below) con-
cerned with the asymptotic variance, which recommend a fixed number of particles for any B
sufficiently large and allocation of the remaining resources to iterating the MCMC algorithm
for this fixed number of particles.

4.5.3. Asymptotic variance. We now show that our bounds lead to recommendations for
N similar to those of [16, 32] when considering the asymptotic variance as a criterion. We
can use the bound (16) to give an upper bound on the resulting asymptotic variance.
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FIG. 1. A plot of the function σ 
→ log(ṽ(σ )/σ 2) in the case CP = 1.

LEMMA 59. Fix a test function f ∈ L2
0(μ). In the setting of Theorem 21, for a reversible

Markov kernel P , the asymptotic variance v(f,P ) is bounded by

v(f,P ) ≤ −‖f ‖2
2 + 4�(f )

∞∑
n=0

F−1(n).

EXAMPLE 60. For our log-normal pseudo-marginal example, we can then ask for a given
f , how to tune σ in order to minimise the resulting bound on the asymptotic variance. We
can bound

∞∑
n=1

F−1
PM(n) ≤

∞∑
n=1

2

CP
exp

{
− 1

2σ 2 W2
(

CPnσ 2

2 exp(σ 2/2)

)}

≤ 2

CP

∫ ∞
0

exp
(−aW2(bx)

)
dx,

where a := 1/(2σ 2) and b := CPσ 2/(2 exp(σ 2/2)). Here, we used the fact that the Lambert
function is increasing. Through routine calculations and making use of the substitution bx =
u exp(u) ⇔ u = W(bx), this integral can be simplified and written as

ṽ(σ ) := 1

b

[
exp

(
1/(4a)

)(
1 + 1

2a

)
a−1/2

∫ ∞
−a−1/2/2

exp
(−w2)

dw + 1

2a

]
.

In this final expression, both a and b depend on σ , and the resulting function of σ 
→ ṽ(σ )/σ 2

can be optimised numerically, where we divide by σ 2 to take into account the additional
computational cost; see Figure 1. Note that the optimal value σ∗ of σ does not depend on
CP, and we find numerically that σ∗ ≈ 0.973. This is consistent with [16] who report optimal
values in the range σ∗ ≈ 1.0 − 1.7 (dependent on the performance of the marginal algorithm)
using another bound on the asymptotic variance, while [32] find σ∗ ≈ 1.812 using a scaling
and diffusion approximation.
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