
Forest resampling for distributed sequential Monte Carlo

Anthony Lee

⇤
Nick Whiteley

††

May 31, 2015

Abstract: This paper brings explicit considerations of distributed computing architectures and data structures into the
rigorous design of Sequential Monte Carlo (SMC) methods. A theoretical result established recently by the authors shows
that adapting interaction between particles to suitably control the Effective Sample Size (ESS) is sufficient to guarantee
stability of SMC algorithms. Our objective is to leverage this result and devise algorithms which are thus guaranteed to
work well in a distributed setting. We make three main contributions to achieve this. Firstly, we study mathematical
properties of the ESS as a function of matrices and graphs that parameterize the interaction amongst particles. Secondly,
we show how these graphs can be induced by tree data structures which model the logical network topology of an abstract
distributed computing environment. Thirdly, we present efficient distributed algorithms that achieve the desired ESS
control, perform resampling and operate on forests associated with these trees.

Keywords: data structures; distributed computing; effective sample size; particle filters

1 Introduction

SMC algorithms are interacting particle methods for ap-
proximating sequences of distributions arising in statis-
tics, and are commonly applied to Hidden Markov Mod-
els (HMM’s) for filtering and marginal likelihood estima-
tion (see, e.g., [14, 13]). We focus here on this HMM
setting for simplicity, although our methodology is rel-
evant to other SMC schemes, such as [5], [10] and [6].
It is becoming increasingly important that computation-
ally intensive algorithms are suited to implementation on
many-core computing architectures (see, e.g., [30]), and
it is well established that standard SMC algorithms nat-
urally have this property (see, e.g., [24]). In particular,
the time in which such algorithms run on many-core de-
vices is typically sublinear in the number of particles, N ,
until N reaches a device- and application-specific critical
size, resulting in significant performance improvements for
moderate numbers of particles. However, the number of
particles required for acceptable accuracy in various set-
tings can be substantially larger than this critical size. In
order to provide accurate estimates in these situations in a
timely fashion, attention is naturally drawn to distributed
implementations of SMC algorithms, in which particles
are distributed over multiple devices which can communi-
cate over a network (see, amongst others, [3, 18, 31]). In

⇤
Department of Statistics, University of Warwick

†
School of Mathematics, University of Bristol

this environment the interactions between particles, which
provide fundamental stability properties of the algorithm,
are costly due to relatively slow network speeds in com-
parison to fast on-device memory accesses.

Motivated by the desire to develop Monte Carlo algo-
rithms whose communication structure is more naturally
suited to distributed architectures, Whiteley et al. [34]
proposed and studied a generalization of standard SMC
algorithms, called ↵SMC, in which interaction between
particles may be modulated in an on-line fashion. The
“↵” in ↵SMC refers to certain matrices which are chosen
adaptively as the algorithm runs, dictating or constraining
this interaction. A special case of ↵SMC is the popular
adaptive resampling strategy originally proposed by Liu
and Chen [26]. One of the main results of [34] is a stabil-
ity theorem which shows that, subject to regularity condi-
tions on the HMM, adapting ↵ so as to enforce an appro-
priate lower bound on the ESS is sufficient to ensure time-
uniform convergence of ↵SMC filtering estimates, and en-
dow it with other attractive theoretical properties so that
the computational cost of the algorithm grows manage-
ably with the length of the data record. This provides a
criterion for stabilization of these algorithms when com-
munication constraints influence interaction.

Monitoring and controlling the ESS using ↵ matrices
is therefore very important. However, if implemented
naively, this monitoring and control itself involves col-
lective operations on the entire particle system, and so

1

remains as an obstacle to parallelization. In this paper,
our overall aim is to address this obstacle and formulate
approaches to ESS control which are more appropriate for
distributed implementation. In order to do so, we consider
a logical tree topology which represents an abstract dis-
tributed computing environment. This network structure
accommodates divide-and-conquer routines and recursive
programming, making it suited to distributed computa-
tion, and its hierarchical nature lends itself to partition-
ing and resampling operations. We consider methods of
ESS control involving computations which are local with
respect to the topology of these trees.

After outlining ↵SMC in Section 2, our first original con-
tribution in Section 3 is a study of the ESS itself, as a
functional of the ↵ matrix governing interaction. This
study leads us to consider a subset of potential ↵ matrices
with a specific associated graphical structure. We then
define a partial order on this set of matrices, which makes
precise a sense in which they are more or less suited to dis-
tributed architectures, and prove that the ESS is (partial)
order-preserving. This important relationship connects
computational considerations with statistical performance
and informs our algorithm design. Section 3 culminates
in a lower bound on the ESS phrased in terms of par-
ticle sub-populations, and applied recursively this bound
leads to an abstract recursive algorithm for enforcing a
lower bound on the population-wide ESS. Crucially, each
recursive call of this algorithm can require the consider-
ation of only a small number of aggregated weights, and
this is what makes it suited to distributed architectures.
Section 4 is devoted to practical implementation of this
abstract recursive algorithm in a distributed setting using
trees, in such a way that all quantities required are avail-
able via local computations whose cost is independent of
N . An interpretation of the resulting resampling scheme
is that it corresponds to a tree sampling procedure involv-
ing a number of disjoint trees, and so we term the overall
procedure forest resampling. All proofs are given in the
appendix.

2 ↵SMC

2.1 A hidden Markov model

In this section we overview relevant aspects of the general
methodology proposed in [34]. An HMM with measur-
able state space (X,X) and observation space (Y,Y) is a
process {(X

n

, Y

n

) ;n � 0} where {X
n

;n � 0} is a Markov
chain on X, the observations {Y

n

;n � 0}, valued in Y, are

conditionally independent given {X
n

;n � 0}, and the con-
ditional distribution of each Y

n

depends on {X
n

;n � 0}
only through X

n

. Let ⇡

0

and f be respectively a proba-
bility distribution and a Markov kernel on (X,X), and let
g be a Markov kernel acting from (X,X) to (Y,Y), with
g(x, ·) admitting a density, denoted similarly by g(x, y),
with respect to some dominating �-finite measure. The
HMM specified by ⇡

0

, f and g, is

X

0

⇠ ⇡

0

,

X

n

| {X
n�1

= x

n�1

} ⇠ f(x

n�1

, ·), n � 1,

Y

n

| {X
n

= x

n

} ⇠ g(x

n

, ·), n � 0. (1)

Throughout this paper we consider a fixed observation
sequence {y

n

;n � 0} and write

g

n

(x) := g(x, y

n

), n � 0. (2)

We also work under the mild assumption that for each
n � 0, sup

x2X gn(x) < +1 and g

n

(x) > 0 for all x 2 X.

For n � 1, let ⇡

n

be the conditional distribution of X

n

given Y

0:n�1

= y

0:n�1

, called the prediction filter ; and let
Z

n

be the marginal likelihood of the first n observations,
evaluated at the point y

0:n�1

. Due to the conditional inde-
pendence structure of the HMM the following recursions
hold:

⇡

n

(A) =

´
X ⇡n�1

(dx) g

n�1

(x)f(x,A)´
X ⇡n�1

(dx) g

n�1

(x)

, A 2 X , n � 1,

and

Z

n

= Z

n�1

ˆ
X
⇡

n�1

(dx) g

n�1

(x) , n � 1,

with the convention Z

0

:= 1. Our main computational ob-
jectives are to approximate {⇡

n

;n � 0} and {Z
n

;n � 0}.

2.2 The ↵SMC algorithm

We write [M] := {1, . . . ,M} for a generic M 2 N. We
denote by N an arbitrary but fixed positive integer rep-
resenting the number of particles in the algorithm we are
about to describe. To simplify presentation, whenever a
summation sign appears without the summation set made
explicit, the summation set is taken to be [N], for exam-
ple we write ⌃

i

to mean ⌃

N

i=1

. Finally, let A
[N]

be the
set of doubly stochastic matrices of size N ⇥ N (this is
a special case of the setup of [34], corresponding to their
assumption (B++

)).

The ↵SMC algorithm simulates a sequence {⇣
n

;n � 0}
with each ⇣

n

:=

�

⇣

1

n

, . . . , ⇣

N

n

�

valued in XN . When n � 1,

2

this involves choosing a matrix ↵

n�1

from A
[N]

according
to some deterministic function of {⇣

0

, . . . , ⇣

n�1

}, and this
matrix specifies the type of interaction that occurs at time
n. In particular, whenever ↵ij

n�1

= 0 this implies that both
the particle ⇣

i

n

and its weight W

i

n

are sampled/calculated
independently of ⇣j

n�1

, and so zero entries in ↵

n�1

encode
a lack of interaction.

Algorithm 1 ↵SMC
For n = 0,

For i = 1, . . . , N ,
Set W

i

0

= 1.
Sample ⇣

i

0

⇠ ⇡

0

.
For n � 1,
(?) Select ↵

n�1

from A
[N]

as a function of {⇣
0

, . . . , ⇣

n�1

}
For i = 1, . . . , N ,

(†) Set W

i

n

=

P

j

↵

ij

n�1

W

j

n�1

g

n�1

(⇣

j

n�1

).
(‡) Sample

⇣

i

n

|⇣
0

, . . . , ⇣

n�1

⇠
P

j

↵

ij

n�1

W

j

n�1

g

n�1

(⇣

j

n�1

)f(⇣

j

n�1

, ·)
P

j

↵

ij

n�1

W

j

n�1

g

n�1

(⇣

j

n�1

)

With �

x

denoting the Dirac measure centred on x, the
objects

⇡

N

n

:=

P

i

W

i

n

�

⇣

i
n

P

i

W

i

n

, Z

N

n

:=

1

N

X

i

W

i

n

, n � 0, (3)

are regarded as approximations of ⇡
n

and Z

n

, respectively.
The validity of the weight updates in Algorithm 1 and
general theoretical properties of the approximations ⇡

N

n

and Z

N

n

are the focus of [34].

In general, some algorithm design is involved at line (?)

of Algorithm 1; one has to decide on a rule which dic-
tates how ↵

n�1

is chosen from A
[N]

, and in practice
one will often select ↵

n�1

from A
[N]

as some function
of
�

W

1

n�1

, . . . ,W

N

n�1

�

and
�

g

n�1

(⇣

1

n�1

), . . . , , g

n�1

(⇣

N

n�1

)

�

.
Given the lack of interaction encoded by zero entries of
↵

n�1

, there is also great practical interest in the situation
where ↵

n�1

is chosen to be a sparse matrix. This is the
primary focus of this paper; a brief discussion of existing
choices of (?) follows a key stability result from [34] that
ultimately motivates our developments here.

2.3 The ESS and stability of ↵SMC

Exactly how ↵

n�1

is chosen in line (?) of Algorithm 1 is
the only degree of freedom in an implementation of ↵SMC.

Consequently, one of the main contributions of [34] is a
stability theorem that provides strong guidance for de-
signing (?) in practice. Central to this stability theorem
is the effective sample size (ESS), a measure of the Monte
Carlo accuracy of a weighted set of samples introduced in
[22], see also [25, Section 4]. The ESS associated with the
weights

�

W

i

n

: i 2 [N]

is

N

eff
n

:=

�

P

i

W

i

n

�

2

P

i

(W

i

n

)

2

. (4)

The theorem, reproduced below, gives a rigorous theoret-
ical justification for enforcing a lower bound on N

eff
n

when
selecting ↵

n�1

. It relies on the following regularity con-
dition on the HMM, which is often used to establish sta-
bility results for non-adaptive SMC algorithms (see, e.g.,
[9, 4, 33], and also [32] for stability under weaker condi-
tions).

Assumption. (C) There exists (�, ✏) 2 [1,1)

2 such that

sup

n�0

sup

x,y

g

n

(x)

g

n

(y)

 �, f(x, ·)  ✏f(y, ·), (x, y) 2 X2

.

For µ a measure on (X,X) and ' a real-valued, X -
measurable function on X we define µ(') :=

´
X '(x)µ(dx),

allowing us to compare ⇡

N

n

with ⇡

n

via the differences
⇡

N

n

(')� ⇡

n

('), for suitable '. For example, when A 2 X
and ' = 1

A

then ⇡

n

(') is the conditional probability that
X

n

2 A given Y

0:n�1

= y

0:n�1

and ⇡

N

n

(') its ↵SMC esti-
mate.

Theorem. [34, Theorem 2] Assume (C). Then there
exist finite constants c

1

and for any r � 1, c

2

(r), such
that for any N � 1 and ⌧ 2 (0, 1], if

inf

n�0

N

eff
n

� N⌧, (5)

then

sup

n�1

E
"

✓

Z

N

n

Z

n

◆

2

#

1/n

 1 +

c

1

N⌧

, (6)

and for any ' : X ! R which is X -measurable and
bounded,

sup

n�0

E
h

�

�

⇡

N

n

(')� ⇡

n

(')

�

�

r

i

1/r

 k'k1
c

2

(r)p
N⌧

. (7)

Importantly, the condition (5) can be ensured in practice
without additional simulation. Indeed, from line (†) of
Algorithm 1 and (4) together, we see that N

eff
n

clearly
depends on ↵

n�1

,
�

W

i

n

: i 2 [N]

and ⇣

n�1

but not on ⇣

n

.
Therefore, ↵

n�1

can be selected adaptively in (?) to ensure
that N

eff
n

exceeds some threshold before ⇣

n

is simulated.

3

2.4 Existing ↵SMC algorithms

Two members of A
[N]

used implicitly in methods predat-
ing ↵SMC are: 1

1/N

, the N ⇥ N matrix which has 1/N

as every entry; and Id, the identity matrix. If ↵
n

= 1
1/N

for every n, ↵SMC reduces to the bootstrap particle filter
(BPF), whereas if ↵

n

= Id for every n, ↵SMC reduces to
sequential importance sampling (SIS). The BPF involves
every particle interacting with every other particle in line
(‡), in the particular sense that the distribution for each ⇣

i

n

is a mixture of the form
P

j

s

j

f(⇣

j

n�1

, ·) where each s

j

> 0.
Furthermore, the BPF will always satisfy (5) with ⌧ = 1

since W

i

n

= W

j

n

for any i, j 2 [N] when ↵

n�1

= 1
1/N

. In
contrast, in SIS there is no interaction in this same sense,
as ⇣

i

n

⇠ f(⇣

i

n�1

, ·) for each i 2 [N] and in general (5) will
not be satisfied for a given ⌧ > 0. An alternative existing
↵SMC algorithm, which does enforce (5) is the adaptive
resampling particle filter (ARPF) of [26]. In particular,
the ARPF chooses, at each time n, ↵

n�1

to be either Id if
the resulting ESS of (W i

n

)

i2[N]

would be above a prespec-
ified threshold and 1

1/N

otherwise. Hence there is either
no interaction or full interaction at each time. We refer
the reader to [34, Section 2.2] for further details of these
relationships.

Whiteley et al. [34, Section 5.3] suggested some procedures
for adaptively selecting ↵

n�1

from A
[N]

at line (?). Em-
pirical results using these procedures for a given threshold
⌧ in (5) indicated that while the communication cost in-
curred by the ARPF is lower than that of the BPF, it can
be substantially reduced by allowing more general choices
of ↵

n�1

that are between Id and 1
1/N

in terms of sparsity,
and therefore that ↵SMC is a promising avenue for imple-
mentation in a distributed setting. However, a practical
issue concerning these adaptive procedures is that guaran-
teeing (5) involves evaluating the ESS for some candidate
↵

n�1

’s, and this task may itself be demanding in terms
of communication cost. Indeed, if one wishes to search
through a large set of candidates for ↵

n�1

, e.g. when
attempting to guarantee (5) with as sparse an ↵

n�1

as
possible, the cost of step (?) may dominate the overall
cost of Algorithm 1. On the other hand, the ARPF in-
volves only the two candidates Id and 1

1/N

; evaluating
the ESS for the candidate Id can be done cheaply, and if
↵

n�1

= 1
1/N

, then we always have N

eff
n

= N , so step (?)

is inexpensive. However, if ↵

n�1

= Id does not achieve
N

eff
n

� N⌧ there is no choice but to set ↵
n�1

= 1
1/N

, and
one then incurs the communication cost associated with
the resulting population-wide interaction at step (‡).

2.5 Objective of the paper

In this paper we will investigate practical methods to carry
out the adaptive selection in (?) as well as steps (†) and
(‡), with ↵

n�1

chosen from a large family of matrices of
varying levels of sparsity. Our main objective is to design
instances of ↵SMC which guarantee (5) and for which (6)
and (7) are therefore guaranteed, whilst achieving a desir-
able balance between the communication costs associated
with steps (?) and (‡).
We emphasize that Algorithm 1 is not intended to be im-
plemented explicitly, since this would involve manipula-
tion of large N ⇥N matrices. For example, SIS, the BPF
and the ARPF all perform the steps in Algorithm 1 im-
plicitly. We also aim to avoid here a situation in which all
particle weights need to be sent to a central processor in
order for (?) to be implemented, which was not considered
in [34].

While the selection algorithms proposed here will be first
devised in terms of the ↵ matrices involved, ultimately
all procedures will take the form of recursive, divide-and-
conquer algorithms without any ↵ matrices being con-
structed explicitly. This type of algorithm is well-suited to
implementation in a distributed computing environment
with a tree network structure [29, Chapter 7]. To help
us understand how we can achieve (5) using sparse ↵

n�1

,
but without excessive communication, we proceed with an
investigation of the ESS.

3 Properties of the ESS

In Section 2 it was seen that the ESS of the time n weights
can be seen as a function of the stochastic matrix ↵

n�1

,
following (†) and (4). In this section, we study a gen-
eralization of the ESS as a function of an input sparse
substochastic N ⇥ N matrix a. This generalization al-
lows us to make statements in Section 3.1 about the ESS
of a + a

0 where both a and a

0 are substochastic matrices
whose non-zero entries do not overlap. In Section 3.2 we
then consider graphs that induce a subset of such sub-
stochastic matrices, namely disjoint unions of complete
graphs. These graphs naturally encode an interaction or
communication structure for the particles in ↵SMC and
can be used to define a partial order over the substochas-
tic matrices introduced in Section 3.1. Importantly, the
generalized ESS is then shown to be order-preserving with
respect to this partial order. In Section 3.3 a lower bound
on the generalized ESS is obtained whose calculation can
be performed recursively with only a small amount of “lo-
cal” information being communicated, and which directly

4

leads to a recursive algorithm for specifying step (?) of Al-
gorithm (1) that relies only on “local” information being
available in each recursive call.

3.1 Dependence of the ESS on ↵

Slightly extending our notation, for each non-empty V ✓
[N] let A

V

be the set of all substochastic N ⇥N matrices
a with the following properties:

1. a leaves the uniform distribution on V invariant,

2. a

ij

= 0 whenever (i, j) 2 [N]

2 \ V 2.

Note that when V = [N], we have A
V

⌘ A
[N]

as defined
in Section 2. By convention, when V = ;, we define A

V

to contain only the zero matrix. It is readily observed
that if a 2 A

V

and a

0 2 A
V

0 with V \ V

0
= ; then

(a+ a

0
) 2 A

V [V

0 .

Now let A :=

S

V✓[N]

A
V

and define the function N

e↵

:

A⇥ RN

+

! R
+

,

N

e↵

(a, c) :=

8

<

:

0 a 2 A;,

(

P
i

P
j a

ij
c

j
)

2

P
i(

P
j a

ij
c

j
)

2 otherwise,
(8)

where c = (c

1

, . . . , c

N

) 2 RN

+

(for simplicity we shall
always assume that each c

i is strictly positive). This
generalizes the ESS in (4): let c be given by c

i

:=

W

i

n�1

g

n�1

(⇣

i

n�1

), i 2 [N]. Then, if ↵

n�1

= a 2 A
[N]

,
we have N

e↵

(↵

n�1

, c) ⌘ N

e↵

n

. If instead ↵

n�1

= a + a

0,
where a 2 A

V

for some strict, non-empty subset V ⇢ [N]

and a

0 2 A
[N]\V , then

N

e↵

(a, c) =

⇣

P

i2V

P

j2V

a

ij

c

j

⌘

2

P

i2V

⇣

P

j2V

a

ij

c

j

⌘

2

=

�

P

i2V

W

i

n

�

2

P

i2V

(W

i

n

)

2

represents the ESS associated with the sub-population of
|V | weights

�

W

i

n

: i 2 V

, cf. (4).

The following proposition provides useful properties of
N

e↵ .

Proposition 1. Let V, V

0 ✓ [N] such that V \ V

0
= ;.

Let a 2 A
V

, a

0
, ã

0 2 A
V

0 and c 2 RN

+

be given such that
N

e↵

(a, c), N e↵

(a

0
, c) and N

e↵

(ã

0
, c) are all positive. All

of the following hold:

1. Extremes: 1  N

e↵

(a, c)  |V | and N

e↵

(a, c) = |V |
whenever a

ij

= |V |�1I (i, j 2 V).

2. Subadditivity:

N

e↵

(a+ a

0
, c)  N

e↵

(a, c) +N

e↵

(a

0
, c) ,

with equality only when
P

j2V c

j

N

eff
(a,c)

=

P
j2V 0 c

j

N

eff
(a

0
,c)

.

3. Monotonicity:

N

e↵

(a

0
, c)  N

e↵

(ã

0
, c)

=) N

e↵

(a+ a

0
, c)  N

e↵

(a+ ã

0
, c),

with equality on the right hand side of the implication
only when N

e↵

(a

0
, c) = N

e↵

(ã

0
, c).

4. Lower bound:

N

e↵

(a+ a

0
, c) � min

�

N

e↵

(a, c) , N

e↵

(a

0
, c)

.

The first part of this proposition is well known and iden-
tifies extremal values of N e↵ , of which the maximal value
can always be realized by a particular choice of a. The
other parts concern properties of N

e↵ when consider-
ing elements of A

V

and A
V

0 for some fixed and disjoint
V, V

0 ✓ [N]. The second establishes the subadditivity of
N

e↵ and indicates that the effective sample size associ-
ated with a + a

0 is less than the sum of those associated
with a and a

0 separately. The third shows that neverthe-
less a monotonicity property holds when comparing two
substochastic matrices in A

V

, and the fourth provides a
simply-proved but tight lower bound on the effective sam-
ple size associated with a+ a

0.

3.2 Disjoint unions of complete graphs
and a partial order

Whiteley et al. [34, Section 5.3] considered a family of can-
didate ↵ matrices which have the interpretation of being
transition matrices of random walks on regular undirected
graphs. In this section, we expand upon this duality be-
tween ↵ matrices and undirected graphs, and introduce
some mathematical machinery which allows us describe
how these objects are related to each other, and N

e↵ . In
particular, we consider graphs that are disjoint unions of
complete graphs (Definition 1 below): these graphs are
not necessarily regular but are highly structured nonethe-
less and are of interest here because we can define a partial
order over them, and then establish a partial order preser-
vation result for N

e↵ (see Propositions 2 and 3) that will
ultimately guide the efficient exploration of progressively
denser stochastic matrices until one is found, a, for which
we can guarantee N

e↵

(a, c) � N⌧ .

5

To proceed, let us introduce some standard graph-
theoretic notions. A graph G = (V,E) is a set of ver-
tices V ✓ [N] and a set of edges E ✓ V

2, where an edge
(i, j) 2 E represents a connection between vertices i and j.
We adopt the convention that (i, i) 2 E whenever i 2 V .
If G is undirected then (i, j) 2 E () (j, i) 2 E. If
G is a complete graph then E = V

2. Since a complete
graph is defined solely by its vertex set, and because com-
plete graphs are important building blocks in the sequel,
we define (V) := (V, V

2

) to be the complete graph with
vertices V .

Let [denote the disjoint union of two graphs: if G =

(V,E), G

0
= (V

0
, E

0
) and V \ V

0
= ; then G [G

0
=

(V [V

0
, E [E

0
).

Definition 1. (Disjoint union of complete graphs) A
graph G is a disjoint union of complete graphs if for some
K 2 [N] there exists a set of pairwise disjoint subsets of
[N], denoted {V

k

: k 2 [K]} such that G =

S

k2[K]

(V

k

).

In analogy with A
V

(and A) we define G
V

to be the
set of graphs which have vertices V and which are dis-
joint unions of complete graphs (and G :=

S

V✓[N]

G
V

).
Clearly, if G 2 G

V

, G

0 2 G
V

0 and V \ V

0
= ;, then

G [G

0 2 G
V [V

0 . We also define the matrix-valued func-
tion �

� : G = (V,E) 2 G 7�! a = (a

ij

) 2 A
where

a

ij

:=

(I{(i,j)2E}P
k2[N] I{(i,k)2E} (i, j) 2 V

2

,

0 (i, j) 2 [N]

2 \ V 2

.

(9)

One trivial property of elements G = (V,E) 2 G is that
(i, j) 2 E and (j, k) 2 E implies (i, k) 2 E. It is therefore
clear that if G 2 G

V

then �(G) is a symmetric matrix
and leaves the uniform distribution on V invariant, hence,
�(G) 2 A

V

. Figure 1 shows an example of a graph G 2 G
and the corresponding substochastic matrix �(G). Letting
AG := {�(G) : G 2 G} be the image of �, it is straight-
forward that � : G ! AG is a bijection and so we denote
by �

�1 the inverse of �. In addition, it can be seen that
if G 2 G

V

and G

0 2 G
V

0 with V \ V

0
= ;, then

� (G [G

0
) = �(G) + �(G

0
). (10)

We can now introduce a particular relation amongst
graphs, and amongst the corresponding substochastic ma-
trices.

Definition 2. (Binary relation �) Let G = (V,E) and
˜

G = (

˜

V ,

˜

E) be members of G. Then we write G � ˜

G if

and only if V =

˜

V and E ✓ ˜

E. Since � is a bijection
between G and AG we will also write, for a, ã 2 AG, a � ã

if and only �

�1

(a) � �

�1

(ã).

Proposition 2. (Partial order) � is a partial order over
G and AG.

Definition 2 says that for some G,

˜

G 2 G
V

we have G � ˜

G

if ˜

G = G, or if ˜

G can be obtained from G by adding
edges in such a way that ˜

G 2 G
V

. Intuitively, one can
imagine adding edges by choosing two of the complete
graphs comprising G and adding edges between all vertices
in these two graphs. Figure 2 shows an example of two
graphs G,G

0 2 G such that G � G

0. We note that � is
not a total order, because there exist members of G

V

, G =

(V,E), G0
= (V,E

0) such that E * E

0 and E

0 * E. Our
interest in � is the following order preservation property.

Proposition 3. (Order preservation) For any c 2 RN

+

,
a � ã =) N

e↵

(a, c)  N

e↵

(ã, c).

3.3 Local lower bounds on N e↵

In this subsection we present Algorithm 2, a recursive
method for efficient selection of a 2 A

[N]

; using a cor-
responding recursive lower bound on N

e↵ (Proposition 4)
and the ordering result Proposition 3, we shall validate
Algorithm 2 with Proposition 5, which shows that it is
guaranteed to achieve N

e↵

(a, c) � N⌧ .

For purposes of exposition, we first provide an expression
for N e↵

(ã, c) when ã is the substochastic matrix associated
with a disjoint union of complete graphs. Following (10),
let ã =

P

k2[K]

�((V

k

)) 2 AG \ A
V

for some K 2 [N]

and pairwise disjoint {V
k

: k 2 [K]} with V =

S

k2[K]

V

k

.
Then, from (8),

N

e↵

(ã, c) =

⇣

P

k2[K]

P

j2Vk
c

j

⌘

2

P

k2[K]

P

i2Vk

⇣

P

j2Vk
�((V

k

))

ij

c

j

⌘

2

=

⇣

P

k2[K]

P

j2Vk
c

j

⌘

2

P

k2[K]

|V
k

|
⇣

|V
k

|�1

P

j2Vk
c

j

⌘

2

. (11)

We note that (11) depends on c only through the val-
ues of the sums

n

P

j2Vk
c

j

: k 2 [K]

o

; we can interpret
this as saying that N

e↵

(ã, c) is equal to the ESS associ-
ated with a collection of

P

k2[K]

|V
k

| weights, in which for
each k 2 [K] there are |V

k

| weights all taking the value
|V

k

|�1

P

j2Vk
c

j . This lends interpretation to the lower
bound in the following proposition.

6

1

6

3

4

5

7

2

6

6

6

6

6

6

6

6

4

1/2 · · · · 1/2 ·
· · · · · · ·
· · 1/3 1/3 1/3 · ·
· · 1/3 1/3 1/3 · ·
· · 1/3 1/3 1/3 · ·

1/2 · · · · 1/2 ·
· · · · · · 1

3

7

7

7

7

7

7

7

7

5

Figure 1: A graph G 2 G, with vertex set {1, 3, 4, 5, 6, 7}, and the corresponding matrix �(G). For visual clarity, self-loops
are not shown.

1

6

3

4

5

7

�
1

6 3

4

5

7

Figure 2: Two graphs G,G

0 2 G with G � G

0.

Proposition 4. Let {V
k

: k 2 [K]} consist of non-empty
and pairwise disjoint subsets of [N] and {a

k

: k 2 [K]} be
given such that each a

k

2 A
Vk . Let a =

P

k2[K]

a

k

and
ã =

P

k2[K]

�((V

k

)). Then for any c 2 RN

+

,

N

e↵

(ã, c) � N

e↵

(a, c) � min

k

⇢

N

e↵

(a

k

, c)

|V
k

|
�

N

e↵

(ã, c) .

(12)

Importantly, Proposition 4 enables us to calculate a lower
bound on N

e↵

⇣

P

k2[K]

a

k

, c

⌘

without explicit computa-
tion of (8). This observation is at the heart of our new
algorithms.

A disjoint union of complete graphs with vertices V ✓ [N]

can be succinctly represented by a partition P = {V
k

: k 2
[K]} of V , where K 2 [|V |]. Overloading our N

e↵

(·, c)
notation so as to conveniently express certain quantities
in Algorithm 2, we define for such a partition P ,

N

e↵

(P, c) :=

⇣

P

S2P

P

j2S

c

j

⌘

2

P

S2P

|S|
⇣

|S|�1

P

j2S

c

j

⌘

2

. (13)

Since P is a partition of V , we have

N

e↵

(P, c)

P

S2P

P

j2S

1

= |V |�1

N

e↵

(P, c) =: ⇢(P, c), (14)

and this quantity also appears in Algorithm 2.

If P and ˜

P are the partitions representing G and ˜

G respec-
tively, where G,

˜

G 2 G
V

for some V ✓ [N], then G � ˜

G if

Algorithm 2 Choose an a 2 A
V

such that
N

e↵

⇣

P

k2[K]

a

k

, c

⌘

� ⌧ |V |
choose.a(V, ⌧)

1. Choose a partition P = {V
1

, . . . , V

K

} of V such that
⇢(P, c) � ⌧ .

2. If P = {V } then return �((V)).

3. Otherwise, return
X

k2[K]

choose.a (V

k

, ⌧/⇢(P, c)) .

and only if P is a refinement of ˜

P . This allows us to make
the following definition, which will be used extensively in
the sequel.

Definition 3. (Coarsening) Let P , ˜

P be partitions of
some subset of [N]. Then ˜

P is a coarsening of P , written
˜

P ⌫ P , if and only if P is a refinement of ˜

P .

It follows from Proposition 3 that ˜

P ⌫ P =)
N

e↵

(

˜

P , c) � N

e↵

(P, c).

Proposition 5. Algorithm 2 called with (V, ⌧) satisfying
; 6= V ✓ [N] and ⌧ 2 [0, 1] returns a 2 A

V

such that
N

e↵

(a, c) � ⌧ |V |.

There are a number of ways that step 1 of Algorithm 2
can be implemented. One possibility, motivated by Propo-
sition 3, is to search through a sequence of successively

7

coarser, candidate partitions until the condition ⇢(P, c) �
⌧ is met. In Section 4 we provide a more detailed and prac-
tical version of this procedure in Algorithm 6, in which the
partitions considered arise from collections of tree data
structures.

4 Forest resampling

In this section we introduce tree data structures to rep-
resent the logical topology of a distributed computer ar-
chitecture. Loosely, these trees provide a model for how
the operations involved in ↵SMC can be arranged over a
network of communicating devices, each of which has the
capacity to store data and to perform basic simulation
and arithmetic tasks. In Section 4.1 we explain the con-
nection between the distributed architecture and tree data
structures, and in Section 4.2 we explain the connection
between trees and forests, and the partitions, graphs and
matrices addressed in Section 3. Sections 4.3 and 4.4 de-
scribe the role of forests when implementing Algorithm 1,
and all these ingredients are brought together in Algo-
rithm 3, which is an implementation of Algorithm 1 using
trees and forests. Algorithm 3 is provided here to guide
the reader through the developments of these sections,
with the definition of a tree and the recursive subrou-
tines populate, sample and choose.forest introduced
progressively. Steps 2(a)–(d) correspond to implementing
step (?) of Algorithm 1, while step 2(e) implements lines
(†) and (‡). The choose.forest subroutine itself can be
seen as an implementation of Algorithm 2.

A brief description of Algorithm 3 is the following. The
graphical structure of T

0

, a base tree, will typically be
the same at each time n, so at each time n steps 2(a)–
(c) fill in the values of the nodes in this base tree, which
depend on the weights {W i

n�1

}N
i=1

of the particles at time
n � 1 and the values {g(⇣i

n�1

)}N
i=1

. In step 2(d) a forest,
or disjoint union of trees, is chosen such that each time
n, particle ⇣

i

n

is associated with a particular subtree of
T

0

, subject to the constraint that the effective sample size
of the time n weights {W i

n

}N
i=1

will exceed N⌧ . In step
2(e) each particle ⇣

i

n

is then sampled and its weight W

i

n

calculated, involving only the communication of particles
⇣

j

n�1

and weights W j

n�1

where ⇣

j

n

is in the same subtree as
⇣

i

n

. All the procedures are recursive, divide-and-conquer
algorithms suitable to distributed implementation, with
inputs and outputs of the recursive calls containing only
small amounts of local information.

Algorithm 3 ↵SMC with forest resampling

1. For i 2 [N], sample ⇣

i

0

⇠ ⇡

0

and set W

i

0

 1.

2. For n � 1:

(a) Create an unpopulated tree T

0

with root ⌫
0

and
leaves {⌫

i

: i 2 [N]}.
(b) For each i 2 [N], set the value of leaf node ⌫

i

V(⌫
i

) �

1,W

i

n�1

g

n�1

(⇣

i

n�1

)

�

.

(c) Call populate(⌫
0

).
(d) Set F choose.forest(⌫

0

, ⌧).
(e) For each i 2 [N]:

i. Set W

i

n

 V
2

(R(t

F

(i)))/V
1

(R(t

F

(i))),
ii. Set j sample(R(t

F

(i))),
iii. Sample ⇣

i

n

⇠ f(⇣

j

n�1

, ·).

4.1 Distributed computer architecture
and trees

For the purposes of this paper, we are interested primar-
ily in a setting where there are a number of possibly het-
erogeneous computing devices that can communicate by
sending data over a network. Qualitatively, the structural
assumption will be that communication within a device is
far quicker than communication between devices. If there
are M devices, we might think each device i 2 [M] is
capable of handling a particle system with N

i

particles.
This implies that interactions involving the N

i

particles
on device i are considerably less costly than interactions
involving particles on different devices.

This architecture suggests the use of a particular type of
data structure, a tree, to represent possible interactions
between computing devices. A tree is a recursive data
structure comprising a set of nodes with associated val-
ues. Furthermore, networks with a tree structure dictat-
ing their communication are naturally suited to recursive,
divide-and-conquer algorithms [29, Chapter 7], which are
exactly the type of algorithms we will propose.

Definition 4. (Node) A node ⌫ is an object that has a
value, V(⌫), and a (possibly empty) set of child nodes,
C(⌫).
Definition 5. (Finite tree) A (finite) tree T is a finite set
of nodes which is either empty, or satisfies the following
properties:

8

D

1

· · ·

D

2

· · ·

D

3

· · ·

D

4

· · ·
⌫

1

⌫

2

· · · ⌫

N

· · ·

Figure 3: Roles of nodes.

1. C(⌫) ✓ T for every ⌫ 2 T (no node has children
outside T).

2. C(⌫)\ C(⌫0) = ; for any distinct ⌫, ⌫0 2 T (no node is
the child of two different nodes in T).

3. There exists a unique element of T called the root
and denoted R(T), such that R(T) /2 S

⌫2T

C(⌫) (a
unique root node is not a child of any of the other
nodes in T).

One can show (e.g., by contradiction) that if T is a tree
then every node in T other than R(T) is a descendant of
R(T), i.e., T \ {R(T)} = D(R(T)) where D(⌫) denotes
the descendants of ⌫:

D(⌫) :=

(; C(⌫) = ;,
C(⌫) [

⇣

S

�2C(⌫) D(�)

⌘

C(⌫) 6= ;.

Definition 6. (Subtree) A subtree, of a tree T , consists
of a node in T , taken together with all of the descendants
of that node. In particular, for some ⌫ 2 T we call S(⌫) :=
⌫ [D(⌫) the subtree of T with root ⌫.

The definitions of a tree and its subtrees are equivalent
to those found in [21, p. 308], but with an emphasis on
their formulation using children. Here, trees serve as data
structures in that the value of each node is the data stored
there, and data transfer can occur between a node and its
children.

It is conventional to call a node of a tree T whose set of
children is empty a leaf, and the set of such nodes comprise
the leaves of T . Our intention is to have the individual
particles, indexed by j 2 [N], represented by leaves of a
tree and the parents of leaves representing the M devices
in the distributed architecture. If each device i is assigned
N

i

particles then the children of the node associated with
device i will be the N

i

leaves associated with the particle

indices
n

1 +

P

j2[i�1]

N

j

, . . . ,

P

j2[i]

N

j

o

. Beyond these
two levels, the structure is purposefully abstract so as to
accommodate various choices which could, e.g., be related
to more complex architectural considerations such as the
geographical location of the devices. It is, however, as-
sumed that each node is physically contained on a single
device although more than one node may be physically
contained on the same device. The general idea is that a
node will both facilitate and modulate interaction between
its children. Figure 3 shows a possible tree with 4 devices.
In our recursive algorithms, direct communication occurs
only between parents and their children. Therefore, we
henceforth assume that a base tree T

0

has been defined
where each node can communicate with all of its children
reasonably quickly.

Let the base tree T

0

have root node ⌫

0

and exactly N

leaves {⌫
i

: i 2 [N]}. We now define the set of leaf indices
associated with a node ⌫ of T

0

to be the set of indices
associated with the leaves of S(⌫), i.e., we let `(⌫

i

) := {i}
for each i 2 [N], and for each ⌫ 2 T

0

such that C(⌫) 6= ;,
`(⌫) :=

S

�2C(⌫) `(�). Without ambiguity we also define,
for T a subtree of T

0

, `(T) := `(R(T)). For some c 2 RN

+

,
we define the value of each node ⌫ to be

V(⌫) := (V
1

(⌫),V
2

(⌫)) :=

0

@|`(⌫)| ,
X

j2`(⌫)

c

j

1

A

,

so that the value of leaf node ⌫

i

, e.g., is V(⌫
i

) = (1, c

i

).
Once the values of the leaves have been set, Algorithm 4
can be invoked on ⌫

0

to calculate recursively the values of
the rest of the nodes in the tree, and is motivated by the
fact that, element-wise,

V(⌫) =
X

�2C(⌫)

V(�), (15)

when C(⌫) 6= ;. This is an instance of a recursive reduction
algorithm suitable for implementation in both parallel and

9

Algorithm 4 Populate a subtree
populate(⌫)

1. If C(⌫) = ;, return V(⌫).
2. Otherwise, set V(⌫) P

�2C(⌫) populate(�), where
the summation is component-wise.

3. Return V(⌫).

distributed settings (see, e.g., [15, 17]) which can be called
on the root of the subtree in question. Typically, one
will call it on ⌫

0

to populate the entire tree T

0

, as in
Algorithm 3. The time complexity associated with each
node ⌫’s computation is in O(|C(⌫)|).

4.2 Graphs induced by trees and forests

We now take the first step towards connecting our tree
data structures with the type of graphs discussed in Sec-
tion 3. We define the graph induced by a tree T to be

G(T) := (`(T)), (16)

the complete graph with vertices `(T). This allows us
to define the substochastic matrix induced by a tree as
�(T) := �(G(T)). It is immediately obvious that the only
member of A

[N]

that can be induced by a single tree is
�(T

0

) = 1
1/N

. The notion of a forest allows a richer subset
of A

[N]

to be specified using trees.

Definition 7. (Forest) A forest F is a set of pairwise
disjoint trees.

It follows from this definition that if T, T

0 2 F are dis-
tinct, then `(T) \ `(T

0
) = ;. If T is a tree then {T} and

{S(⌫) : ⌫ 2 C(R(T))} are both examples of forests. In
what follows, the forests defined will always be comprised
of subtrees of T

0

. Figure 4 supplements the example from
Figure 1 with a possible associated tree data structure and
forest of subtrees.

We define the set of leaf indices associated with a forest to
be `(F) :=

S

T2F

`(T). We also let F
V

:= {F : `(F) = V },
where V ✓ [N], and F :=

S

V✓[N]

F
V

. We can relate any
F 2 F to a member of G by defining

G(F) :=

[

T2F

G(T) =

[

T2F

(`(T)).

From (10), the substochastic matrix induced by F 2 F is
then

�(F) := �(G(F)) =

X

T2F

�((`(T))).

One can therefore think of a forest F as being a data struc-
ture counterpart to a disjoint union of complete graphs
represented by the partition P = {`(T) : T 2 F}.

4.3 Forest resampling

We now introduce practical methodology that, given a
forest F 2 F

[N]

, enables implementation of step (‡) of
Algorithm 1 when ↵

n�1

= �(F). Let c be given by c

i

:=

W

i

n�1

g

n�1

(⇣

i

n�1

), i 2 [N], so that our goal is to sample,
for each i 2 [N],

⇣

i

n

| ⇣
0

, . . . , ⇣

n�1

⇠
P

j

↵

ij

n�1

c

j

f(⇣

j

n�1

, ·)
P

k

↵

ik

n�1

c

k

,

which can be implemented in two substeps. First one
simulates an ancestor index A

i

n�1

with

P
�

A

i

n�1

= j | ⇣
0

, . . . , ⇣

n�1

�

=

↵

ij

n�1

c

j

P

k

↵

ik

n�1

c

k

,

and then, secondly, simulates ⇣

i

n

⇠ f(⇣

A

i
n�1

n�1

, ·). Imple-
mentation of the second step is a model-specific matter,
so we focus on the first step. We define t

F

to be the tree-
valued map where for any i 2 `(F), t

F

(i) is the unique
tree T 2 F such that i 2 `(T). It then follows that
↵

ij

n�1

= I {j 2 `(t

F

(i))} / |`(t
F

(i))| and so we can write

P
�

A

i

n�1

= j | ⇣
0

, . . . , ⇣

n�1

�

=

I {j 2 `(t

F

(i))} cj
P

k2`(tF (i))

c

k

, (17)

which implies that A

i

n�1

is categorically distributed
over `(t

F

(i)) with probabilities proportional to
�

c

k

: k 2 `(t

F

(i))

.

Following (17), we propose Algorithm 5, which given the
root node R(T) of an arbitrary subtree T of T

0

, samples
from a distribution over `(T) with probability mass func-
tion

p

T

(j) :=

I {j 2 `(T)} cj
P

k2`(T)

c

k

, j 2 `(T).

In this algorithm, the time complexity associated with
each node ⌫’s computation is in O(|C(⌫)|).
Proposition 6. The probability that Algorithm 5 returns
j 2 `(⌫) is pS(⌫)

(j).

Sampling according to (17) for each i 2 [N] can be accom-
plished by calling Algorithm 5 N times with potentially
different inputs. For example, if F = {T

0

} then one would
call Algorithm 5 N times on ⌫

0

= R(T

0

), correspond-
ing to standard multinomial resampling with ↵

n�1

=

10

7 1 6 3 4 5

Figure 4: A forest made up of subtrees of a tree, and the complete graphs induced by each tree in the forest.

Algorithm 5 Obtain a sample according to pS(⌫)

sample(⌫)

1. If C(⌫) = ;, return the only element in `(⌫).

2. Otherwise, let �

1

, . . . ,�|C(⌫)| be the children of ⌫.

3. Sample i from a categorical distribution over
[|C(⌫)|] with probabilities proportional to
{V

2

(�

i

) : i 2 [|C(⌫)|]}.
4. Return sample(�

i

).

�(F) = 1
1/N

. In contrast, if F = {S(⌫
1

), . . . ,S(⌫
N

)}
then one would call Algorithm 5 once on each member
of {⌫

1

, . . . , ⌫

N

} with the effect that A

i

n�1

= i for each
i 2 [N], and this corresponds to ↵

n�1

= �(F) = Id.
An intermediate between these two extremes would be if
F =

�S(⌫1), . . . ,S(⌫M)

, where ⌫i represents device node
i in T

0

, cf. Section 4.1. Then, for each i 2 [M], one would
call Algorithm 5

�

�

`(⌫

i

)

�

� times, once to set each ancestor
index in

n

A

j

n�1

: j 2 `(⌫

i

)

o

. These special cases also ex-
emplify a more general phenomenon: sampling according
to (17) using Algorithm 5 does not require the explicit
computation of ↵

n�1

. In Section 4.4 we address the issue
of how a forest can be chosen adaptively.

Finally, we note that step (†) of Algorithm 1 can also
be accomplished straightforwardly when ↵

n�1

= �(F).
Indeed, then

W

i

n

=

X

j

�(F)

ij

c

j

=

X

k2`(tF (i))

c

k

/ |`(t
F

(i))|

= V
2

(R(t

F

(i)))/V
1

(R(t

F

(i))).

4.4 Forest selection

Our attention now turns to implementing the (?) step of
Algorithm 1. This can be performed by choosing a for-
est F 2 F

[N]

such that N

e↵

(�(F), c) � ⌧N . Algorithm 6
is a recursive implementation of such a procedure, and
is essentially a practical analogue of Algorithm 2. The
(??) step in this algorithm is specified only abstractly,
with concrete choices the subject of Section 4.5. Like
steps (†) and (‡), when implemented according to the
procedures of Section 4, step (??) also involves only lo-
cal computations in the following sense. Recalling Defini-
tion 3, choosing P

0 to be a partition of C(⌫) implies that
P is a coarsening of {`(�) : � 2 C(⌫)}, and so the com-
putation of ⇢(P, c) involves only the quantities |`(�)| and
P

j2`(�)

c

j for each � 2 C(⌫), which are readily available
through {V(�) : � 2 C(⌫)}. In the particular case where
T

0

is a binary tree then (??) involves only choosing be-
tween P

0
= {`(�

1

), `(�

2

)}, where �

1

and �

2

are the two
children of ⌫, and P

0
= {C(⌫)} so the strategies of Sec-

tion 4.5 are not relevant.

In Algorithm 6, new nodes can be created. It is assumed
that when this happens, the values of the new nodes are
set appropriately according to (15).

The recursive nature of the algorithms presented allow
them to be fairly straightforwardly translated into archi-
tecture specific implementations. In particular, it is imag-
ined that the computations of Algorithms 4, 5 and 6 all
take place on the device on which their node argument
physically resides, and that the recursive calls then rep-
resent messages passed over the network. In addition, all
of the algorithms are recursive, divide-and-conquer algo-
rithms naturally suited to parallel implementation. Fi-
nally, the forests chosen by Algorithm 6 are intrinsically
related to the original choice of T

0

, the base tree defined in
Section 4.1. This allows, through a judicious choice of T

0

and (??), the communication structure involved in Algo-

11

Algorithm 6 Specify a forest F with `(F) = `(⌫) and
N

e↵

(�(F), c) � ⌧ |`(V)|
choose.forest(⌫, ⌧)

1. If C(⌫) = ; then return {S(⌫)}.
2. (??) Choose a partition P

0 of C(⌫) such that ⇢(P, c) �
⌧ , where P =

n

S

�2S

`(�) : S 2 P

0
o

.

3. If P 0
= {C(⌫)} then return {⌫}. Otherwise, set R

;.
4. For each element S 2 P

0

(a) If |S| > 1 then create a node ⌫

0 with children
{� : � 2 S} and set R R [{S(⌫0)}.

(b) If S = {�}, set R R [
choose.forest (�, ⌧/⇢(P, c)).

5. Return R.

rithm 3 to be related to the specific network architecture
available in a beneficial way.

The exact implementation of the algorithms may vary
slightly, depending on the architectures involved, without
changing in principle. For example, one implementation of
Step 2(e) of Algorithm 3 could involve each device sending
its list of associated indices “up” the tree until it reaches
its root in the forest. From there, the indices may filter
“down” the tree in a slight variant of Algorithm 5 until
they reach their leaves. If index i reaches leaf ⌫

j

, say, the
device housing ⌫

j

can send ⇣

j

n�1

to the device housing ⌫

i

,
which can then sample ⇣

i

n

⇠ f(⇣

j

n�1

, ·).

4.5 Partitioning strategies

The (??) step in Algorithm 6 remains to be specified for
general T

0

. A simple choice would be to choose the par-
tition {{�} : � 2 C(⌫)} if it satisfies the condition in (??)

and {C(⌫)} otherwise. However, this could lead to more
interaction than is necessary.

Before continuing, we note that selecting a partition of
child nodes of ⌫ is equivalent to selecting a partition P

of `(⌫) subject to the constraint that the chosen partition
is a coarsening of P

0

:= {`(�) : � 2 C(⌫)}. Therefore, we
simplify the presentation by considering partitions of V ✓
[N] instead of partitions of nodes and our goal is to choose
a partition P ⌫ P

0

of V such that ⇢(P, c) � ⌧ .

If a specific order over coarsenings of P

0

is defined, one

could seek to find the minimal coarsening P

⇤ w.r.t. this
order that satisfies ⇢(P

⇤
, c) � ⌧ . For example, one might

wish to find a P ⌫ P

0

subject to ⇢(P, c) � ⌧ with the
maximal number of elements, or where the size of the
largest element is minimized, both of which could be trans-
lated roughly as P being as refined as possible. This can
always be achieved by enumerating candidate partitions
P

1

, P

2

, . . . in the given order and calculating ⇢(P

i

, c) for
each until some ⇢(P

i

, c) � ⌧ , but this can quickly become
computationally prohibitive as |C(⌫)| grows. Indeed, the
number of candidate partitions is the |C(⌫)|’th Bell num-
ber. This type of integer programming optimization prob-
lem is related to the Partition problem (see, e.g., [27]) and
is likely to be NP-hard in general. We therefore focus on
efficient search strategies for finding a P ⌫ P

0

subject to
⇢(P, c) � ⌧ for which we hope that P is not much coarser
than necessary.

Both of the strategies we introduce below consider a se-
quence of successively coarser partitions P

1

, P

2

, . . . which
satisfy the constraint that P

0

� P

1

� P

2

� · · · ,
where P

0

is as above, and returns P

j

such that j =

min {i : ⇢(P
i

, c) � ⌧}. This general procedure has the
property that ⇢(P

i

, c) � ⇢(P

i�1

, c) and |P
i

|  |P
i�1

|�1 for
i 2 [|C(⌫)|]. The latter, together with the fact that (from
part 1 of Proposition 1) |P | = 1 =) ⇢(P, c) = 1 � ⌧ , im-
plies that the total number of partitions considered is at
most |C(⌫)|. The specific strategies below are therefore de-
fined by the precise way in which the sequence P

1

, P

2

. . .

is chosen. Finally, we note that if max

⌫

|C(⌫)| does not
grow with the number of particles N then the computa-
tional cost of step (??) in Algorithm 6 using either of the
following strategies is bounded independently of N . This
is one of the advantages of the hierarchical tree structure,
in contrast to the flat structure considered in [34, Sec-
tion 5.4].

Pairing strategy for structured trees

This strategy applies when each node in T

0

has a number
of children that is a power of 2 and the number of leaves
associated with each child is equal.

Definition 8. (Pairing of a partition) Let P be a partition
of V ✓ [N]. A pairing P

0 of P is a partition of V where
each element of P 0 is the union of two elements of P .

Whiteley et al. [34, Section 5.4] suggested a “greedy” pair-
ing strategy, which we formalize in the following proposi-
tion.

Proposition 7. Let P be a partition of V ✓ [N] with
P = {V

i

: i 2 [2M]} for some M 2 [N], M  N/2. Let

12

V

i

be ordered such that 0  P
j2V1

c

j  · · ·  P
j2V2M

c

j

and assume that |V
i

| = |V
j

| for any i, j 2 [2M]. Then a
pairing P

0 of P that maximizes ⇢(P

0
, c) is given by P

0
=

{{V
1

, V

2M

} , {V
2

, V

2M�1

} , . . . , {V
M

, V

M+1

}}.

In the pairing strategy, then, we define the sequence
of partitions P

1

, P

2

, . . . by each P

i

being the optimal
pairing of P

i�1

provided by Proposition 7. Since the
combined computational cost of sorting arrays of length
M,M/2, . . . , 1 is O(M logM) the computational cost of
step (??) is O(|C(⌫)| log |C(⌫)|) under this strategy.

Matching strategy

This strategy does not rely on any particular structure
of T

0

and therefore is applicable more generally than the
pairing strategy.

Proposition 8. For some K 2 [N] let P = {V
i

: i 2 [K]}
be a partition of V and P

k,l

:= {V
i

: i 2 [K]} \ {V
k

, V

l

} [
{V

k

[V

l

} a coarsening of P associated with the indices
k, l 2 [K]. Then the choice of k, l 2 [K] that maximizes
⇢(P

k,l

, c) is

arg max

(k,l)2[K]

2

|V
k

| |V
l

|
|V

k

|+ |V
l

|

P

j2Vk
c

j

|V
k

| �
P

j2Vl
c

j

|V
l

|

!

2

.

When [K] is large, maximizing this expression by evalu-
ating it for each (k, l) 2 [K]

2 has a time complexity in
O(K

2

), which we wish to avoid. Therefore, we resort to
finding the (k, l) 2 [K]

2 for which only the squared expres-
sion is maximized. This happens when k and l correspond
to the sets of indices whose associated terms in the squared
expression are most different.

The matching strategy therefore defines the suc-
cessively coarser partitions P

1

, P

2

, . . . by letting
S

min

i�1

= argmin

S2Pi�1 |S|�1

P

j2S

c

j , S

max

i�1

=

argmax

S2Pi�1 |S|�1

P

j2S

c

j , and setting

P

i

= P

i�1

\ �Smin

i�1

, S

max

i�1

 [�Smin

i�1

[S

max

i�1

.

An interpretation of this is that the elements of the par-
tition with whose associated values are most different are
successively matched. The computational cost of step (??)

is also O(|C(⌫)| log |C(⌫)|) using this strategy, as it can
be implemented using an initial sort of |C(⌫)| values with
O(|C(⌫)|) deletions and insertions into this sorted list.

5 Discussion

5.1 Numerical illustrations

We consider a simplified HMM whose empirical analysis
illustrates the cost of the forest resampling schemes. In
particular, we assume that the HMM equations (1) satisfy
the additional conditional independence criterion that for
any x 2 X, f(x, ·) = ⇡

0

(·), and that g

n

in (2) is time-
homogeneous with g

n

(x) = g(x). We further assume that
when X ⇠ ⇡

0

, g(X) is a lnN
⇣

��

2

2

,�

2

⌘

random variable,
with mean 1 and variance exp

�

�

2

�� 1. This model is not
intended to be a realistic, challenging application of SMC.
Instead, its greatly simplified structure allows for trans-
parent analysis and easy replication of results; the time-
homogeneous nature of the model makes it well-suited for
assessing the computational cost of resampling for large
n, and its conditional independence structure allows us
to make some calculations which explicitly show how the
ESS is related to the moments of ZN

n

and ⇡

N

n

(').

Writing E and V for respectively expectation and variance
under the SMC algorithm, and for some measure µ and
function ', var

µ

(') :=

´
X ['(x)� µ(')]

2

µ(dx), one can
verify from (†), (4) and (3) that E

�

Z

N

n

| ⇣
0

, . . . ⇣

n�1

�

=

⇡

0

(g)Z

N

n�1

= Z

N

n�1

with

V
✓

Z

N

n

Z

N

n�1

| ⇣
0

, . . . ⇣

n�2

◆

=

var

⇡0 (g)

N

eff
n�1

=

exp

�

�

2

�� 1

N

eff
n�1

,

and E
�

⇡

N

n

(') | ⇣
0

, . . . ⇣

n�1

�

= ⇡

n

(') = ⇡

0

(') with

V
�

⇡

N

n

(') | ⇣
0

, . . . ⇣

n�1

�

=

var

⇡0 (')

N

eff
n�1

.

Two natural definitions of the cost of an ↵SMC iteration
are the average and maximum degree of the vertices in
the forest corresponding to the ↵

n�1

transition matrix
chosen in (?) of Algorithm 1, which we denote d

N

n

and
d

max

n

. These measure the communication complexity of
the algorithms [2, Chapter 1]. For example, when ↵

n�1

=

Id both costs are 1 and when ↵

n�1

= 1
1/N

both costs
are N , although they are different in general. We ran
Algorithm 1 for n = 200 iterations with various values of
⌧ and � and N = 2

12

= 4096 particles. One can think
of the value of N reported here as being a large multiple
of 4096 since, conceptually, one could imagine that the
leaves in this experiment represent devices with a large
number of particles. The tree T

0

used at each iteration
always consisted of three levels with each node except the
leaves having 2

4

= 16 children, but the leaf/device indices
were permuted at each iteration.

13

Figure 5 shows the behaviour of ¯

d = n

�1

P

n

p=1

d

N

p

, d
max

=

n

�1

P

n

p=1

d

max

p

and N

eff
= n

�1

P

n

p=1

N

eff
p

as ⌧ and � vary
using the adaptive resampling particle filter (ARPF) of
[26], and the two proposed strategies in Section 4.5, all
instances of ↵SMC. We can see that the ARPF is partic-
ularly expensive in terms of degree of interaction, and has
a higher average ESS than the rest. We note that d

max

p

is a suitable proxy for the computational time associated
with iteration p of ↵SMC, when computational time is
dominated by the time taken to send O(d

max

p

) bits over
the network and this communication is performed in par-
allel. As such, d

max

then represents a scaled estimate of
the expected time per iteration of ↵SMC. The pairing and
matching strategies perform much better than the ARPF
and have an ESS much closer to the threshold. In all
cases, increases in ⌧ and � increase the cost of the algo-
rithm, as one would expect. The bootstrap particle filter
(not shown) always has an ESS of N and all vertices in
its forest have degree N , and it is therefore the most ex-
pensive of the stable algorithms considered in this article.

An interesting phenomenon is illustrated by the shape of
the curve in Figure 6a, which suggests that increasing ⌧

beyond around 0.5 rapidly becomes expensive. This seems
to indicate that, over many iterations, small-scale inter-
actions with more particles can provide roughly the same
performance as large-scale interactions with fewer parti-
cles. Indeed, the value ⌧ = 1 corresponds to an average
degree of 4096 in this example for any of the methods,
which is not shown, and is almost 10 times larger than the
corresponding cost for ⌧ = 224/225 ⇡ 0.996, the right-
most point shown. Figure 6b shows further that fixing
N⌧ = 2048 but increasing N has the effect of reducing
the average degree to close to 2 and suggests that opti-
mizing, in terms of computational cost, the choice of N

and ⌧ with a given target ESS N⌧ could involve choosing
a large N and a small ⌧ , depending on the relative cost of
increasing N compared to the cost of interactions.

We performed a simulation study using a parallel mes-
sage passing model in order to determine the impact of
algorithm selection in the context of large distributed net-
works, and to ascertain network communication time as-
sociated with the ARPF and forest resampling algorithms.
See [28] for an overview of various message passing mod-
els in a distributed memory context. Function calls and
values returned within Algorithm 3 steps 2a)-e)ii, and the
subroutines thereof, involve passing messages along edges
of T

0

, each message consisting of some number of particles
and weights. The size of the messages can be expressed
in bytes and we assumed 32 bytes for a particle and that
each weight is an 8 byte double-precision floating point
number. Since messages are passed along the edges of

T

0

, network congestion is largely avoided, so the Hockney
model [16] for communication time is appropriate. This
model relates the communication time of a message to its
size and two key quantities: network latency and band-
width, which we assumed to be respectively 1ms, and
either 1Mbps or 1000Mbps. The overall communication
time involved at each iteration of step 2 of Algorithm 3
was then calculated as the longest total communication
time amongst all sequences of messages with serial depen-
dence. For simplicity, we considered the case where T

0

is
a binary tree from the devices up, so that there is no need
to consider the partitioning strategies in Section 4.5.

The results are tabulated in Table 1 and Table 2, in which
we consider performance in the two bandwidth regimes
as the number of devices increases with the number of
particles per device, 128, fixed. We take ⌧ = 0.5 and
� = 2. In both cases, the forest resampling scheme was
superior in terms of average time spent communicating
over the network per iteration. If the processor time re-
quired to sample from f or evaluate g is sufficiently large,
both algorithms can provide substantial speedup; the re-
sults indicate only that the ARPF is less computationally
efficient, particularly when the number of devices is large.
For larger bandwidths, the difference is less pronounced
and indeed for very large bandwidths the ARPF can even
dominate as the depth of the tree in forest resampling
becomes a latency bottleneck.

In the case of the ARPF, our implementation involves
messages sent between the devices and a single master
node. Alternative distributed memory implementations of
the ARPF are possible, relying on device-device commu-
nication in large quantities and in this case the resulting
network congestion indicates even worse performance un-
der an appropriate model in that setting such as a LogP
[8] or LogGP [1] model. This is because each device must
then communicate with a large number of other devices
concurrently, testing the capacity of the network.

5.2 Connection to existing sampling
schemes

Resampling methods other than multinomial can be im-
plemented using trees as well. In order to make this con-
crete, we assume that the tree is ordered, i.e., the chil-
dren of each node written in sequence as �

1

,�

2

, This
imposes only the constraint that the labelling of chil-
dren is consistent, and allows the specification of Algo-
rithm 7, which implements Algorithm 5 with a single uni-
form random variable using the recycling method of [11,
Section III.3.7]. Proposition 9 and the Remark that fol-

14

2

4

6

8

10

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)

4

6

8

10

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

arpf, sigma = 0.5

arpf, sigma = 1.0

arpf, sigma = 1.5

arpf, sigma = 2.0

matching, sigma = 0.5

matching, sigma = 1.0

matching, sigma = 1.5

matching, sigma = 2.0

pairing, sigma = 0.5

pairing, sigma = 1.0

pairing, sigma = 1.5

pairing, sigma = 2.0

(c)

Figure 5: Graphs of (a) log
2

¯

d (b) log
2

d

max

and (c) N eff
/N against ⌧ for various forest selection schemes and choices of �.

0

100

200

300

400

0.00 0.25 0.50 0.75 1.00

matching

pairing

(a) Plot of d̄ against ⌧ for � = 1.

2

4

6

8

10

5000 10000 15000 20000

(b) Plot of d̄ against N with N⌧ = 2048 for � = 1 using the

matching strategy.

Figure 6: Dependence of ¯

d on ⌧

Devices 32 64 128 256 512 1024 2048 4096 8192
ARPF 0.13 0.26 0.52 1.04 2.08 4.16 8.32 16.64 33.27
Forest 0.044 0.063 0.097 0.13 0.16 0.25 0.29 0.41 0.60

Table 1: Average network communication time per iteration (s) for different numbers of devices with a latency of 1ms and
bandwidth of 1 Mbps.

Devices 32 64 128 256 512 1024 2048 4096 8192
ARPF 0.0023 0.0036 0.0062 0.011 0.022 0.043 0.084 0.17 0.33
Forest 0.0053 0.0065 0.0078 0.0091 0.010 0.012 0.014 0.016 0.019

Table 2: Average network communication time per iteration (s) for different numbers of devices with a latency of 1ms and
bandwidth of 1000 Mbps.

15

Algorithm 7 Select a value in `(⌫) given a u 2 [0, 1]

select(⌫, u)

1. If C(⌫) = ;, return the only element in `(⌫).

2. Otherwise, let �

1

, . . . ,�|C(⌫)| be the children of ⌫ in
order.

3. Set

i min

8

<

:

k :

X

j=[k]

V
2

(�

j

) � u

X

j2[|C(⌫)|]

V
2

(�

j

)

9

=

;

.

4. Return

select

�

i

,

u

P

j2[|C(⌫)|] V2

(�

j

)�P
j=[i�1]

V
2

(�

j

)

V
2

(�

i

)

!

.

lows then imply that we can view this algorithm as a tree-
based implementation of the inverse transform method for
sampling from a categorical distribution.

Proposition 9. Assume that the tree is ordered such
that for each node its children (�

i

) have j 2 `(�

i

), k 2
`(�

i+1

) =) j < k. Calling Algorithm 7 with (⌫, u)

returns min

n

k :

P

j2`(⌫)\[k]

c

j � u

P

j2`(⌫)

c

j

o

.

Remark. The ordering specified above is w.r.t. the indices
of particles and imposes no real constraint on how the tree
is actually constructed, as long as a specific order is used
in step 2 of Algorithm 7. If an alternative ordering is
assumed in Proposition 9 the resulting returned value will
still be deterministic and of the form given with a slight
modification to account for this alternative ordering.

Multinomial resampling corresponds to sampling N

i.i.d. uniform random variables u

1

, . . . , u

N and calling
select(⌫, u

i

) for each i 2 [N], thereby providing N i.i.d.
draws from a categorical distribution. One can view other
resampling methods as making dependent draws from a
categorical distribution by the inverse transform method
by using random variables u

1

, . . . , u

N that are not i.i.d.
but for which the distribution of uK , where K is chosen
uniformly at random from [N], is uniform on [0, 1] [see,
e.g., 12]. Therefore, to implement alternative resampling
schemes, one again calls select(⌫, u

i

) for each i 2 [N],
but with u

1

, . . . , u

N distributed in a dependent fashion as
in [12]. The dependent u

i can be interpreted as “trick-
ling” down a tree whose leaves represent ancestor indices
in a manner reminiscent of the approach in [7], which

most closely resembles the systematic resampling scheme
in [20].

5.3 Concluding Remarks

For ease of presentation, we have chosen to work with a
particularly simple version of ↵SMC, in which new sam-
ples are proposed using the HMM Markov kernel f . As
noted in [34], the algorithm is easily generalized to accom-
modate other proposal kernels.

This paper, and the methodology of [34] more generally,
naturally complements the contribution of [18]. In par-
ticular, the methods in the latter allow particles to be
“reconstructed” on a device on the basis of only a small
amount of communicated information, and could be used
in tandem with the algorithms here in appropriate appli-
cations.

Both the approaches in Section 4.5 resemble in some ways
greedy strategies for solving the classical Partition prob-
lem. It would be of interest to consider analogues of more
sophisticated solutions to this problem such as those in
[19] and [23]. More generally, it would be of interest to
have quantitative theoretical results enabling the compar-
ison of particular tree structures and partition selection
schemes.

In practice, it may often be the case that devices are homo-
geneous, with the network connections between any two
devices being of similar latency and bandwidth. In such
situations, one will often create the structure of the tree
at levels above the device and particle layers in a highly
structured way. The use of a randomly generated tree may
be beneficial, as suggested by the Random adaptation rule
of [34, Section 5.4], which had however no hierarchy. A
random permutation of the device nodes, in an otherwise
constant tree was used in Section 5.1 for this reason.

Finally, this paper is concerned primarily with ↵ matrices
that are induced by disjoint unions of complete graphs,
and hence have a particular structure. It would be of in-
terest to explore similar results and methodology for more
general ↵ matrices.

Acknowledgements

We thank Dr. Kari Heine for assistance with the figures,
and three referees for helpful comments. The second au-
thor is supported in part by EPSRC grant EP/K023330/1.

16

A Proofs

Proof of Proposition 1. It is straightforward to show that
if a 2 A

V

then
P

i

a

ij

=

P

i2V

a

ij

= I(j 2 V). Therefore,

N

e↵

(a, c) =

⇣

P

i

P

j

a

ij

c

j

⌘

2

P

i

⇣

P

j

a

ij

c

j

⌘

2

=

⇣

P

i2V

P

j2V

a

ij

c

j

⌘

2

P

i2V

⇣

P

j2V

a

ij

c

j

⌘

2

=

⇣

P

j2V

c

j

⌘

2

P

i2V

⇣

P

j2V

a

ij

c

j

⌘

2

.

We define x

1

:=

P

j2V

c

j , x

2

:=

P

j2V

0 c
j , y

1

:=

P

i2V

⇣

P

j2V

a

ij

c

j

⌘

2

, y

2

:=

P

i2V

0

⇣

P

j2V

0 (a
0
)

ij

c

j

⌘

2

and ỹ

2

:=

P

i2V

0

⇣

P

j2V

0 (ã
0
)

ij

c

j

⌘

2

. This allows us
to write N

e↵

(a, c) = x

2

1

/y

1

, N

e↵

(a

0
, c) = x

2

2

/y

2

and N

e↵

(ã

0
, c) = x

2

2

/ỹ

2

, and since V \ V

0
= ;,

N

e↵

(a+ a

0
, c) = (x

1

+x

2

)

2

/(y

1

+y

2

) and N

e↵

(a+ ã

0
, c) =

(x

1

+ x

2

)

2

/(y

1

+ ỹ

2

).
1. The lower bound holds because
0

@

X

i

X

j

a

ij

c

j

1

A

2

=

X

i,k

0

@

X

j

a

ij

c

j

1

A

0

@

X

j

a

kj

c

j

1

A

�
X

i

0

@

X

j

a

ij

c

j

1

A

2

,

so N

e↵

(a, c) � 1. The upper bound holds because, using
Jensen’s inequality,
0

@

X

i

X

j

a

ij

c

j

1

A

2

= |V |2
0

@

X

i2V

|V |�1

X

j2V

a

ij

c

j

1

A

2

 |V |2
X

i2V

|V |�1

0

@

X

j2V

a

ij

c

j

1

A

2

= |V |
X

i2V

0

@

X

j2V

a

ij

c

j

1

A

2

,

so N

e↵

(a, c)  |V |. The upper bound is attained when
a

ij

= |V |�1I (i, j 2 V) since then

X

i2V

0

@

X

j2V

a

ij

c

j

1

A

2

=

X

i2V

0

@

X

j2V

|V |�1

c

j

1

A

2

= |V |�1

0

@

X

j2V

c

j

1

A

2

.

2. The result follows from

N

e↵

(a, c) +N

e↵

(a

0
, c)�N

e↵

(a+ a

0
, c)

=

x

2

1

y

1

+

x

2

2

y

2

� (x

1

+ x

2

)

2

y

1

+ y

2

= x

2

1

⇢

y

2

y

1

(y

1

+ y

2

)

�

+ x

2

2

⇢

y

1

y

2

(y

1

+ y

2

)

�

� 2x

1

x

2

y

1

+ y

2

=

y

1

y

2

y

1

+ y

2

✓

x

1

y

1

� x

2

y

2

◆

2

� 0,

with equality only when x1
y1

=

x2
y2

, corresponding to
P

j2V c

j

N

eff
(a,c)

=

P
j2V 0 c

j

N

eff
(a

0
,c)

.

3. Since N

e↵

(a

0
, c)  N

e↵

(ã

0
, c) =) y

2

� ỹ

2

,

N

e↵

(a+ ã

0
, c)�N

e↵

(a+ a

0
, c)

=

(x

1

+ x

2

)

2

y

1

+ ỹ

2

� (x

1

+ x

2

)

2

y

1

+ y

2

� 0,

with equality only when y

2

= ỹ

2

, corresponding to
N

e↵

(a

0
, c)  N

e↵

(ã

0
, c).

4. We have

N

e↵

(a

1

+ a

2

, c)

=

(x

1

+ x

2

)

2

y

1

+ y

2

=

x

2

1

y

1

· y

1

y

1

+ y

2

+

2x

1

x

2

y

1

+ y

2

+

x

2

2

y

2

· y

2

y

1

+ y

2

� min

i

⇢

x

2

i

y

i

�

= min

�

N

e↵

(a, c) , N

e↵

(a

0
, c)

.

Proof of Proposition 2. We prove the result for G since
the result for AG then follows. Let V ✓ [N] and consider
G

1

= (V,E

1

), G
2

= (V,E

2

) and G

3

= (V,E

3

). It suffices
to check that � is reflexive (G

1

� G

1

), antisymmetric
(G

1

� G

2

and G

2

� G

1

implies G

1

= G

2

) and transitive
(G

1

� G

2

and G

2

� G

3

implies G
1

� G

3

). Since E
1

✓ E

1

,
it follows that G

1

� G

1

. When G

1

� G

2

and G

2

� G

1

,
this implies E

1

✓ E

2

and E

2

✓ E

1

and it follows that
E

1

= E

2

and so G

1

= G

2

. Finally, G
1

� G

2

and G

2

� G

3

implies that E

1

✓ E

2

and E

2

✓ E

3

and so E

1

✓ E

3

and
therefore G

1

� G

3

.

Proof of Proposition 3. Since a � ã we have that a, ã 2
AG \ A

V

for some V ✓ [N]. Therefore, for some
K,

˜

K 2 [N] we can write a =

P

k2[K]

�((V

k

)) and
ã =

P

˜

k2[

˜

K]

�((

˜

V

˜

k

)) where each V

k

and ˜

V

˜

k

are subsets of

17

V . Since a � ã, for each k 2 [K] there exists ˜

k 2 [

˜

K] such
that V

k

✓ ˜

V

˜

k

. We now define a sequence, with a

0

= a,
and for i 2 [

˜

K]

a

i

:= a

i�1

+ �((

˜

V

i

))�
X

k2[K],Vk\ ˜

Vi 6=;

�((V

k

)),

and note that a
˜

K

= ã. Now for each i 2 [

˜

K], a
i

2 AG\AV

and letting ˇ

V

i

:=

S

i

j=1

˜

V

j

and

b

i

:=

X

k2[K],Vk\ ˇ

Vi=;

�((V

k

)) +

i�1

X

j=1

�((

˜

V

j

)),

we can write a
i�1

= b

i

+

P

k2[K],Vk\ ˜

Vi 6=; �((Vk

)) and a

i

=

b

i

+�((

˜

V

i

)). From the first part of Proposition 1 we have
that N

e↵

⇣

P

k2[K],Vk\ ˜

Vi 6=; �((Vk

)), c

⌘


�

�

�

˜

V

i

�

�

�

= �((

˜

V

i

))

and so by the monotonicity property in Proposition 1 we
have N

e↵

(a

i�1

, c)  N

e↵

(a

i

, c) for each i 2 [

˜

K]. It follows
that N

e↵

(a, c)  N

e↵

(ã, c).

Proof of Proposition 4. The first inequality follows from
Proposition 3 since a � ã. For the second inequality,
assume that min

k

|V
k

|�1

N

e↵

(a

k

, c) � D. This implies
that for any k 2 [K],

X

i2Vk

0

@

X

j2Vk

a

ij

k

c

j

1

A

2

 1

D|V
k

|

0

@

X

j2Vk

c

j

1

A

2

.

Therefore

N

e↵

(a, c) =

⇣

P

k2[K]

P

j2Vk
c

j

⌘

2

P

k2[K]

P

i2Vk

⇣

P

j2Vk
a

ij

k

c

j

⌘

2

� D

⇣

P

k2[K]

P

j2Vk
c

j

⌘

2

P

k2[K]

|V
k

|�1

⇣

P

j2Vk
c

j

⌘

2

= DN

e↵

(ã, c) .

Proof of Proposition 5. The proof is by induction. Note
that ⌧ 2 [0, 1]. If |V | = 1 then |P | = 1 and N

e↵

c

(P) = 1,
so the claim is true. Now assume that the claim holds
true for all V with |V | 2 [s � 1], s 2 N, and consider
the case where |V | = s. First, note that if P = {V }
then N

e↵

(P, c) = |V | by Proposition 1 and so if |P | =
1 the claim is true. It remains to check that if |P | >

1 then a =

P

k2[K]

a

k

satisfies the claim, where a

k

=

choose.a(V

k

, ⌧/⇢(P, c)). By the induction hypothesis, for
each k 2 [K], N

e↵

(a

k

, c)/ |V
k

| � ⌧/⇢(P, c) since |V
k

| 2
[s� 1] and ⌧/⇢(P, c) 2 [0, 1]. Then by Proposition 4, with
ã =

P

k2[K]

�((V

k

)),

N

e↵

(a, c) � min

k

⇢

N

e↵

(a

k

, c)

|V
k

|
�

N

e↵

(ã, c)

� ⌧

⇢(P, c)

⇢(P, c) |V | = ⌧ |V | ,

and we conclude.

Proof of Proposition 6. Let s

⌫

(j) denote the probability
that Algorithm 5 returns j 2 `(⌫). Given j 2 `(⌫), let
⌫

1 be the parent of ⌫
j

, ⌫2 be the parent of ⌫1, etc., until
⌫

m

= ⌫ is the parent of ⌫m�1. Then

s

⌫

(j) =

c

j

P

k2`(⌫

1
)

c

k

Y

i2[m�1]

P

k2`(⌫

i
)

c

k

P

k2`(⌫

i+1
)

c

k

,

=

c

j

P

k2`(⌫)

c

k

= pS(⌫)

(j).

Proof of Proposition 7. We define x

i

:=

P

j2Vi
c

j for i 2
[2M] and it suffices to show that P 0 minimizes the denom-
inator of ⇢(·, c),

r(P

0
, c) := (2 |V

1

|)�1

X

S2P

0

X

i2S

x

i

!

2

,

since each element of any pairing of P is of size 2 |V
1

|. We
first prove that V

1

[V
2M

is a member of at least one pairing
of P that minimizes r(·, c). Indeed, assume that a pairing
ˇ

P that minimizes r(·, c) is given. We will show that a
pairing ˇ

P

0 containing V

1

[V
2M

exists for which r(

ˇ

P

0
, c) 

r(

ˇ

P , c). Let V

1

[V

j

and V

k

[V

2M

be elements of ˇ

P . We
define ˇ

P

0
=

ˇ

P \ {V
1

[V
j

, V

k

[V
2M

}[{V
1

[V
2M

, V

k

[V
j

}.
Then

2 |V
1

| �r(ˇP , c)� r(

ˇ

P

0
, c)

�

=

X

S2 ˇ

P

X

i2S

x

i

!

2

�
X

S2 ˇ

P

0

X

i2S

x

i

!

2

= (x

1

+ x

j

)

2

+ (x

k

+ x

2M

)

2

� (x

1

+ x

2M

)

2 � (x

k

+ x

j

)

2

= 2x

1

x

j

+ 2x

k

x

2M

� 2x

1

x

2M

� 2x

k

x

j

= 2x

k

(x

2M

� x

j

)� 2x

1

(x

2M

� x

j

)

= 2(x

k

� x

1

)(x

2M

� x

j

) � 0,

18

since x

1

and x

2M

are the minimal and maximal values of
{x

i

: i 2 [2M]}, respectively.

Now, let ˇ

P

0 be a pairing of P and S = V

1

[V

2M

2 ˇ

P

0.
Then r(

ˇ

P

0
, c) = r({S}, c)+ r(

ˇ

P

0 \ {S}, c) and so it follows
that if ˇ

P

0 minimizes r(·, c) then ˇ

P

0 \ {S} is a pairing of
P \ {V

1

, V

2M

} that minimizes r(·, c). It then follows that
at least one pairing ˇ

P

0 of P that minimizes r(·, c) is the
union of V

1

[V

2M

and a pairing of P \ {V
2M

, V

1

} that
minimizes r(·, c). But then the argument above shows
that V

2

[V

2M�1

is a valid element of such a minimizing
pairing. Continuing, we obtain that P

0 is a pairing of P
that minimizes r(·, c) and we conclude.

Proof of Proposition 8. From (14) we can write
⇢(P

k,l

, c) = ⇢(P, c)

r(P,c)

r(Pk,l,c)
where r(P, c) :=

P

S2P

|S|
⇣

|S|�1

P

j2S

c

j

⌘

2

. It suffices therefore to
find k, l 2 [K] minimizing r(P

k,l

, c). Letting m

i

= |V
i

|
and x

i

=

P

j2Vi
c

j , we can write

r(P

k,l

, c) = r(P, c)� x

2

k

m

k

� x

2

l

m

l

+

(x

k

+ x

l

)

2

m

k

+m

l

= r(P, c)� m

k

m

l

m

k

+m

l

✓

x

k

m

k

� x

l

m

l

◆

2

,

the equality following along the same lines as the proof of
the second part of Proposition 1, and we conclude.

Proof of Proposition 9. Let �

⌫

:= (�

⌫,1

, . . . ,�

⌫,K

) be
the ordered children of ⌫, where |C(⌫)| = K. To
alleviate notation, we define c(�

⌫,k

) :=

P

j2`(�⌫,k)
c

j ,

k

⌫

(u) := min

n

k :

P

j2[k]

c(�

⌫,j

) � u

P

j2`(⌫)

c

j

o

and
s

⌫

(k) :=

P

j2[k]

c(�

⌫,j

). Algorithm 7 with input (⌫, u)

returns f

⌫

(u), where

f

⌫

(u) :=

8

<

:

min `(⌫) |`(⌫)| = 1,

f

�⌫,k⌫ (u)

✓

u

P
j2`(⌫) c

j�s⌫(k⌫(u)�1)

c(�⌫,k⌫ (u))

◆

otherwise.

Now we prove by induction that f

⌫

(u) =

min

n

k :

P

j2`(⌫)\[k]

c

j � u

P

j2`(⌫)

c

j

o

. If |`(⌫)| = 1, the
claim is trivially true. Now assume the claim is true for
{⌫ : |`(⌫)| 2 [p � 1]} and consider ⌫ with |`(⌫)| = p > 1.
We have

f

⌫

(u) = f

�⌫,k⌫ (u)

u

P

j2`(⌫)

c

j � s

⌫

(k

⌫

(u)� 1)

c(�

⌫,k⌫(u)
)

!

and we can apply the induction hypothesis since
|`(�

⌫,k⌫(u)
)| 2 [p � 1]. Therefore, letting y :=

u

P

j2`(⌫)

c

j�s
⌫

(k

⌫

(u)�1), and x := �

⌫,k⌫(u)
we can write

f

⌫

(u) as

min

8

<

:

k :

X

j2`(x)\[k]

c

j � y

c(x)

X

j2`(x)

c

j

9

=

;

= min

8

<

:

k :

X

j2`(x)\[k]

c

j � u

X

j2`(⌫)

c

j � s

⌫

(k

⌫

(u)� 1)

9

=

;

= min

8

<

:

k :

X

j2`(⌫)\[k]

c

j � u

X

j2`(⌫)

c

j

9

=

;

,

and we conclude.

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating long messages
into the LogP model – one step closer towards a real-
istic model for parallel computation. In Proceedings
of the Seventh Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 95–105, 1995.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and dis-
tributed computation: numerical methods. Prentice-
Hall, Inc., 1989.

[3] M. Bolić, P. M. Djurić, and S. Hong. Resampling al-
gorithms and architectures for distributed particle fil-
ters. IEEE Trans. Signal Process., 53(7):2442–2450,
2005.

[4] F. Cérou, P. Del Moral, and A. Guyader. A
nonasymptotic variance theorem for unnormalized
Feynman Kac particle models. Ann. Inst. Henri
Poincaré Probab. Stat., 47(3):629–649, 2011.

[5] N. Chopin. A sequential particle filter method for
static models. Biometrika, 89(3):539–552, 2002.

[6] N. Chopin, P. E. Jacob, and O. Papaspiliopoulos.
SMC2: an efficient algorithm for sequential analysis
of state space models. J. R. Stat. Soc. Ser. B Stat.
Methodol., 75(3):397–426, 2013.

[7] D. Crisan and T. Lyons. Minimal entropy approxima-
tions and optimal algorithms for the filtering prob-
lem. Monte Carlo methods and applications, 8(4):
343–356, 2002.

[8] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von

19

Eicken. LogP: Towards a realistic model of paral-
lel computation. In Proceedings of the Fourth ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 1–12, 1993.

[9] P. Del Moral and A. Guionnet. On the stability
of interacting processes with applications to filtering
and genetic algorithms. Ann. Inst. Henri Poincaré
Probab. Stat., 37(2):155–194, 2001.

[10] P. Del Moral, A. Doucet, and A. Jasra. Sequential
Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat.
Methodol., 68(3):411–436, 2006.

[11] L. Devroye. Non-uniform random variate generation.
Springer Verlag, 1986.

[12] R. Douc, O. Cappé, and E. Moulines. Comparison
of resampling schemes for particle filtering. In Pro-
ceedings of the 4th International Symposium on Im-
age and Signal Processing and Analysis, pages 64–69,
2005.

[13] A. Doucet and A. M. Johansen. A tutorial on parti-
cle filtering and smoothing: Fifteen years later. In
D. Crisan and B. Rozovsky, editors, Handbook of
Nonlinear Filtering. Oxford University Press, 2008.

[14] A. Doucet, S. Godsill, and C. Andrieu. On sequential
Monte Carlo sampling methods for Bayesian filtering.
Stat. Comput., 10(3):197–208, 2000.

[15] W. D. Hillis and G. L. Steele Jr. Data parallel algo-
rithms. Communications of the ACM, 29(12):1170–
1183, 1986.

[16] R. W. Hockney. The communication challenge for
MPP: Intel Paragon and Meiko CS-2. Parallel com-
puting, 20(3):389–398, 1994.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: distributed data-parallel programs from
sequential building blocks. ACM SIGOPS Operating
Systems Review, 41(3):59–72, 2007.

[18] S. H. Jun, L. Wang, and A. Bouchard-Côté. Entan-
gled Monte Carlo. In Advances in Neural Information
Processing Systems, pages 2726–2734, 2012.

[19] N. Karmarkar and R. M. Karp. The differencing
method of set partitioning. Technical report, Uni-
versity of California, Berkeley, 1982.

[20] G. Kitagawa. Monte Carlo filter and smoother for
non-Gaussian nonlinear state space models. J. Com-
put. Graph. Statist., 5(1):1–25, 1996.

[21] D. E. Knuth. The Art of Computer Programming,
volume 1. Addison-Wes, 3rd edition, 1997.

[22] A. Kong, J. S. Liu, and W. H. Wong. Sequential im-
putations and bayesian missing data problems. Jour-
nal of the American statistical association, 89(425):
278–288, 1994.

[23] R. E. Korf. From approximate to optimal solutions:
A case study of number partitioning. In Proceedings
of the 14th international joint conference on Artificial
intelligence, pages 266–272, 1995.

[24] A. Lee, C. Yau, M. B. Giles, A. Doucet, and C. C.
Holmes. On the utility of graphics cards to per-
form massively parallel simulation of advanced Monte
Carlo methods. J. Comput. Graph. Statist., 19(4):
769–789, 2010.

[25] J. S. Liu. Metropolized independent sampling with
comparisons to rejection sampling and importance
sampling. Statistics and Computing, 6(2):113–119,
1996.

[26] J. S. Liu and R. Chen. Blind deconvolution via se-
quential imputations. J. Amer. Statist. Assoc., 90
(430):567–576, 1995.

[27] S. Mertens. The easiest hard problem: number par-
titioning. In A. Percus, G. Istrate, and C. Moore,
editors, Computational Complexity and Statistical
Physics, pages 125–139. Oxford University Press,
2006.

[28] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E.
Fagg, E. Gabriel, and J. J. Dongarra. Performance
analysis of MPI collective operations. Cluster Com-
puting, 10(2):127–143, 2007.

[29] J. E. Savage. Models of Computation: Exploring the
Power of Computing. Addison–Wesley, 1998.

[30] M. A. Suchard and A. Rambaut. Many-core algo-
rithms for statistical phylogenetics. Bioinformatics,
25(11):1370–1376, 2009.

[31] C. Vergé, C. Dubarry, P. Del Moral, and E. Moulines.
On parallel implementation of sequential Monte
Carlo methods: the island particle model. Stat. and
Comput. To appear.

[32] N. Whiteley. Stability properties of some particle fil-
ters. Ann. Appl. Probab., 23(6):2500–2537, 2013.

[33] N. Whiteley and A. Lee. Twisted particle filters. Ann.
Statist., 42(1):115–141, 2014.

20

[34] N. Whiteley, A. Lee, and K. Heine. On the role of in-
teraction in sequential Monte Carlo algorithms. arXiv
preprint 1309.2918, 2013. To appear in Bernoulli.

21

	Introduction
	SMC
	A hidden Markov model
	The SMC algorithm
	The ESS and stability of SMC
	Existing SMC algorithms
	Objective of the paper

	Properties of the ESS
	Dependence of the ESS on
	Disjoint unions of complete graphs and a partial order
	Local lower bounds on Neff

	Forest resampling
	Distributed computer architecture and trees
	Graphs induced by trees and forests
	Forest resampling
	Forest selection
	Partitioning strategies

	Discussion
	Numerical illustrations
	Connection to existing sampling schemes
	Concluding Remarks

	Proofs

