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S1 Notation and conventions for the genealogical tracing vari-
ables and measures on X⊗2

We first write an expression for the probability mass function of the genealogical random variables (K1,K2)
described in Section 3.1. Let [N0:n] = [N0]×· · ·×[Nn]. Then with a = (a0, . . . , an−1) ∈ [N0]N1×· · ·×[Nn−1]Nn ,
z = (z0, . . . , zn) ∈ XN0 × · · · × XNn and k1 = (k10, . . . , k

1
n) ∈ [N0:n], we define

C1(a, z; k1) =
I(k1n ∈ [Nn])

Nn

n∏
p=1

I(k1p−1 = a
k1p
p−1).

With k2 = (k20, . . . , k
2
n) ∈ [N0:n], we also define

C2(a, z, k1; k2) =
I(k2n ∈ [Nn])

Nn

n∏
p=1

I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+

I
(
k2p = k1p

)
Gp−1(z

k2p−1

p−1 )∑Np−1

j=1 Gp−1(zjp−1)

 .

Note that with a, z fixed C1(a, z; ·) is a probability mass function on [N0:n], as is C2(a, z, k1; ·) when (a, z, k1)
is fixed. With C1 and C2 so-defined and

C(A, ζ; k1:2) = C1(A, ζ; k1)C2(A, ζ, k1; k2), (S1)

it is evident that C(A, ζ; ·) is the probability mass function of (K1,K2).
We now recursively define a collection of measures on X⊗2, which include the measure µb of Section 3.2.

We define G̃p = G⊗2
p , p ∈ {0, . . . , n}. For any b ∈ Bn and writing x1:2p = (x1p, x

2
p), we define

M̃b0
0 (dx1:20 ) = M0(dx10)

[
I(b0 = 0)M0(dx20) + I(b0 = 1)δx10

(dx20)
]
,

and for each p ∈ {1, . . . , n},

M̃
bp
p (x1:2p−1,dx

1:2
p ) = Mp(x

1
p−1,dx

1
p)
[
I(bp = 0)Mp(x

2
p−1, dx

2
p) + I(bp = 1)δx1p(dx2p)

]
.

We now define, similarly to (1), µb0 = M̃b0
0 and for p ∈ {1, . . . , n}, recursively,

µb0:p(S) =

ˆ
X2

µb0:p−1(dx1:2p−1)G̃p−1(x1:2p−1)M̃
bp
p (x1:2p−1, S), S ∈ X⊗2. (S2)

It follows that for b ∈ Bn, the measure µb described is defined by (S2).

S2 Algorithms for computing the estimates
Algorithm 2 provides pseudo-code for computing V Nn (ϕ) in O(N) time after Algorithm 1 has been run, with
Lemma 6 providing its justification.
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Algorithm 2. Computing V Nn (ϕ).

1. Let S0,n be an array of length N0, initialized to 0.

2. For j ∈ [Nn], set S0,n[Ejn]← S0,n[Ejn] + ϕ(ζjn)/Nn.

3. Set

mN
? (ϕ)←

(
n∏
p=0

Np
Np − 1

)ηNn (ϕ)2 −
∑
i∈[N0]

S0,n[i]2

 .

4. Set V Nn (ϕ)← ηNn (ϕ)2 −mN
? (ϕ).

Lemma 6. For any ϕ ∈ L(ϕ), mN
? (ϕ) = µN0n(ϕ⊗2)/γNn (1)2.

Proof. We have S0,n[i] = N−1
n

∑
j∈[Nn]:E

j
n=i

ϕ(ζjn), for each i ∈ [N0] upon completion of step 2 of Algorithm 2.
Noting that

1

N2
n

∑
i,j:Ei

n 6=E
j
n

ϕ(ζin)ϕ(ζjn) = ηNn (ϕ)2 −
∑
i∈[N0]

 1

Nn

∑
j:E

j
n=i

ϕ(ζjn)


2

,

the result follows from (14) and (16).

Algorithm 3 provides pseudo-code for computing each vNp,n(ϕ), p ∈ {0, . . . , n} in O(Nn) time after Algo-
rithm 1 has been run, with Lemma 7 providing its justification. The computation involves indexing sets of
offspring indices, which we define as

Oip = {j ∈ [Np+1] : Ajp = i}, p ∈ {0, . . . , n− 1}, i ∈ [Np]. (S3)

Algorithm 3. Computing each vNp,n(ϕ), and vNn (ϕ).

1. Let Sn,n be an array of length Nn, such that Sn,n[i] = ϕ(ζin)/Nn.

2. For each p = n− 1, . . . , 0:

(a) Let Sp,n be a zero array of length Np.

(b) For j ∈ [Np+1], set Sp,n[Ajp]← Sp,n[Ajp] + Sp+1,n[j].

3. For each p ∈ {0, . . . , n− 1}:

(a) Let tp be an array of length Np such that tp[i] = Gp(ζ
i
p)/
∑
j∈[Np]

Gp(ζ
j
p).

(b) Let g0,p be a zero array of length N0. For j ∈ [Np], set g0,p[Ejp]← g0,p[E
j
p] + tp[j].

4. Set mN
? (ϕ)←

(∏n
p=0

Np

Np−1

){
ηNn (ϕ)2 −

∑
i∈[N0]

S0,n[i]2
}
.

5. Set mN
n,n(ϕ)← (Nn − 1)

[∏n
q=0

Nq

Nq−1

]∑
i∈[Nn] Sn,n[i]2

(
1− g0,n−1[Ein]

)
.

6. For p ∈ {0, . . . , n− 1},

(a) Let R(1)
p and R(2)

p be zero arrays of length Np.

(b) For j ∈ [Np+1], set R(1)
p [Ajp]← R

(1)
p [Ajp] + Sp+1,n[j] .

(c) For j ∈ [Np+1], set R(2)
p [Ajp]← R

(2)
p [Ajp] + Sp+1,n[j]2.

(d) If p ≥ 1, set mN
p,n(ϕ)← (Np − 1)

(∏n
q=0

Nq

Nq−1

)∑
i∈[Np]

(
R

(1)
p [i]2 −R(2)

p [i]
) (

1− g0,p−1[Eip]
)
;

otherwise set mN
0,n(ϕ)← (N0 − 1)

(∏n
q=0

Nq

Nq−1

)∑
i∈[N0]

(
R

(1)
0 [i]2 −R(2)

0 [i]
)
.

7. For p ∈ {0, . . . , n}, set vNp,n(ϕ)← mN
p,n(ϕ)−mN

? (ϕ). Set vNn (ϕ)←
∑n
p=0 c

−1
p vNp,n(ϕ).
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Lemma 7. For any ϕ ∈ L(X ) and p ∈ {0, . . . , n}, mN
p,n(ϕ) = µNep(ϕ⊗2)/γNn (1)2.

Proof. We define, for any p ∈ {0, . . . , n− 1},

Ḡi0,p :=

∑
j∈[Np]:E

j
p=i

Gp(ζ
j
p)∑

j∈[Np]
Gp(ζ

j
p)

, i ∈ [N0].

We also define ψin,n(ϕ) = ϕ(ζin)/Nn for i ∈ [Nn], and for p ∈ {0, . . . , n− 1},

ψip,n(ϕ) =
∑

j∈[Np+1]:A
j
p=i

ψjp+1,n(ϕ), i ∈ [Np].

In Algorithm 3, Sp,n[i] = ψip,n(ϕ) for each i ∈ [Np] and each p ∈ {0, . . . , n} upon completion of step 2. Upon
completion of step 3, g0,p[i] = Ḡi0,p for each i ∈ [N0] and p ∈ {0, . . . , n− 1}. Finally, upon completion of step
6(c), R(1)

p [i] =
∑
j∈Oi

p
ψip+1,n and R(2)

p [i] =
∑
j∈Oi

p

(
ψip+1,n

)2 for each i ∈ [Np] and p ∈ {0, . . . , n− 1}. We now

verify that mN
p,n(ϕ) = µNep(ϕ⊗2)/γNn (1)2 for each p ∈ {0, . . . , n}.

When p = n, we have

µNen(ϕ⊗2){
(Nn − 1)

∏n
q=0

Nq

Nq−1

}
γNn (1)2

=
∑

k1:2∈I(en)

C(A, ζ; k1:2)ϕ(ζ
k1n
n )ϕ(ζ

k2n
n )

=
∑

k1:2∈[N0:n]2

I(k1n = k2n)

N2
n

ϕ(ζ
k1n
n )2

∑
i∈[Nn−1]

Gn−1(ζin−1)I(Ein−1 6= E
k1n
n )∑

j∈[Nn−1]
Gn−1(ζjn−1)

=
∑
i∈[Nn]

1

N2
n

(
1− ḠE

i
n

0,n−1

)
ϕ(ζin)2,

and we conclude by noting that ψin,n(ϕ) = ϕ(ζin)/Nn. When p = 0, we have

µNe0(ϕ⊗2){
(N0 − 1)

∏n
q=0

Nq

Nq−1

}
γNn (1)2

=
∑

k1:2∈I(e0)

C(A, ζ; k1:2)ϕ(ζ
k1n
n )ϕ(ζ

k2n
n )

=
∑

k1:2∈[N0:n]2

I(k10 = k20)

N2
n

{
n∏
q=1

I(k1q 6= k2q , k
1
q−1 = A

k1q
q−1, k

2
q−1 = A

k2q
q−1)

}
ϕ(ζ

k1n
n )ϕ(ζ

k2n
n )

=
∑
i∈[N0]

∑
j 6=j′∈Oi

0

ψj1,n(ϕ)ψj
′

1,n(ϕ) =
∑
i∈[N0]

∑
j∈Oi

0

ψj1,n(ϕ)

2

−
∑
j∈Oi

0

ψj1,n(ϕ)2.

Finally when p ∈ {1, . . . , n− 1}, we have

µNep(ϕ⊗2){
(Np − 1)

∏n
q=0

Nq

Nq−1

}
γNn (1)2

=
∑

k1:2∈I(ep)

C(A, ζ; k1:2)ϕ(ζ
k1n
n )ϕ(ζ

k2n
n )

=
∑

k1:2∈[N]2

I(k1p = k2p)

N2
n

{
n∏

q=p+1

I(k1q 6= k2q , k
1
q−1 = A

k1q
q−1, k

2
q−1 = A

k2q
q−1)

}

· ϕ(ζ
k1n
n )ϕ(ζ

k2n
n )

∑
i∈[Np−1]

Gp−1(ζip−1)I(Eip−1 6= E
k1p
p )∑

j∈[Np−1]
Gp−1(ζjp−1)

=
∑
i∈[N0]

 ∑
j 6=j′∈Oi

p

ψjp+1,n(ϕ)ψj
′

p+1,n(ϕ)


(

1− ḠE
i
p

0,p−1

)

=
∑
i∈[Np]

(
1− ḠE

i
p

0,p−1

)∑
j∈Oi

p

ψjp+1,n(ϕ)


2

−
∑
j∈Oi

p

ψjp+1,n(ϕ)2

 .
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S3 Proof of Corollary 1
Proof of Corollary 1. Rearranging (4), for any ϕ ∈ L(X ),

V Nn (ϕ) = ηNn (ϕ)2 −

(
n∏
p=0

Np
Np − 1

)
1

N2
n

∑
i,j:Ei

n 6=E
j
n

ϕ(ζin)ϕ(ζjn)

= ηNn (ϕ)2 −

(
n∏
p=0

Np
Np − 1

)ηNn (ϕ)2 − 1

N2
n

∑
i,j:Ei

n=E
j
n

ϕ(ζin)ϕ(ζjn)


=

(
n∏
p=0

Np
Np − 1

) 1

N2
n

∑
i,j:Ei

n=E
j
n

ϕ(ζin)ϕ(ζjn)− ηNn (ϕ)2
{

1−
n∏
p=0

(
1− 1

Np

)}
=

(
n∏
p=0

Np
Np − 1

) 1

N2
n

∑
i∈[N0]

 ∑
j:Ei

n=i

ϕ(ζjn)


2

− ηNn (ϕ)2
n∑
p=0

1

Np
+Op(1/N2)

 ,
where the approximation in the final line holds since Proposition 1 implies ηNn (ϕ)2 converges almost surely
to ηn(ϕ)2. Also using the fact that by Theorem 1, NV Nn (ϕ) converges in probability to a finite constant, we
obtain

NV Nn (ϕ) = NV Nn (ϕ)

n∏
p=0

(
1− 1

Np

)
+Op(1/N)

=
N

N2
n

∑
i∈[N0]

 ∑
j:Ei

n=i

ϕ(ζjn)


2

− ηNn (ϕ)2
n∑
p=0

N

Np
+Op(1/N)

Taking ϕ = 1, cp = 1 and noting
∑
i∈[N ] #i

n = N gives (6). The proof of (7) is similar so the details are
omitted.

S4 Lr error bounds
As in Remark 2, we define

Qp(xp−1, dxp) = Gp−1(xp−1)Mp(xp−1, dxp), p ∈ {1, . . . , n},

and Qn,n = Id, Qp,n = Qp+1 · · ·Qn for p ∈ {0, . . . , n− 1}. The following Lemma will be put to multiple uses
in our analysis.

Lemma 8. For any ϕ ∈ L(X ) and r ≥ 1,

sup
N≥1

N1/2E
{∣∣∣γNn (ϕ)− γn(ϕ)

∣∣∣r}1/r

<∞, sup
N≥1

N1/2E
{∣∣∣ηNn (ϕ)− ηn(ϕ)

∣∣∣r}1/r

<∞.

Proof. Consider the decomposition:

γNn (ϕ)− γn(ϕ) =

n∑
p=0

γNp Qp,n(ϕ)− γNp−1Qp−1,n(ϕ) =

n∑
p=0

γNp (1)
1

Np

∑
i∈[Np]

∆i
p,n,

with the convention γN−1Q−1,n(ϕ) = M0Q0,n(ϕ) in the first equality, and

∆i
0,n = Q0,n(ϕ)(ζip)−M0Q0,n(ϕ),

∆i
p,n = Qp,n(ϕ)(ζip)−

ηNp−1Qp−1,n(ϕ)

ηNp−1(Gp−1)
, 1 ≤ p ≤ n.
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Note that (∆i
0,n)i∈[N0] are independent, identically distributed and zero-mean random variables, and for each

p ≥ 1, given σ(ζ0:p−1), the (∆i
p,n)i∈[Np] are conditionally independent, identically distributed and zero-mean

random variables. Moreover, there exists a finite constant say Cn such that supN≥1 max1≤p≤n maxi∈[Np]

∣∣∆i
p,n

∣∣ <
Cn and supN≥1 max1≤p≤n γ

N
p (1) < Cn. Applying these observations together with the Minkowski and Burkholder–

Davis–Gundy inequalities, there exists a finite constant Bn,r such that

sup
N≥1

N1/2E
{∣∣∣γNn (ϕ)− γn(ϕ)

∣∣∣r}1/r

≤ sup
N≥1

N1/2
n∑
p=0

E


∣∣∣∣∣∣γNp (1)

1

Np

∑
i∈[Np]

∆i
p,n

∣∣∣∣∣∣
r

1/r

≤ Bn,r sup
N≥1

N1/2
n∑
p=0

1

Np
E


∣∣∣∣∣∣
√ ∑
i∈[Np]

(∆i
p,n)2

∣∣∣∣∣∣
r

1/r

<∞.

Applying Minkowski’s inequality to the decomposition

ηNn (ϕ)− ηn(ϕ) =
γNn (ϕ)

γNn (1)

{
γn(1)− γNn (1)

γn(1)

}
+
γNn (ϕ)− γn(ϕ)

γn(1)

gives

sup
N≥1

N1/2E
{∣∣∣ηNn (ϕ)− ηn(ϕ)

∣∣∣r}1/r

≤ supx |ϕ(x)|
γn(1)

sup
N≥1

N1/2E
{∣∣∣γNn (1)− γn(1)

∣∣∣r}1/r

+
1

γn(1)
sup
N≥1

N1/2E
{∣∣∣γNn (ϕ)− γn(ϕ)

∣∣∣r}1/r

,

and the result follows since both terms on the right hand side are finite from the previous bound.

S5 Proofs of Lemmas 1–3 and Proposition 1

S5.1 Conditional particle filters and proof of Lemma 1
We define MN

0 (dz0) =
∏
i∈[N0]

M0(dzi0), and

MN
p (zp−1; ap−1, dzp) =

∏
i∈[Np]

Gp−1(z
aip−1

p−1 )Mp(z
aip−1

p−1 , zip)∑
j∈[Np−1]

Gp−1(zjp−1)
, p ≥ 1.

The probability measure associated with the particle system in Algorithm 1 is specified by

PN (a,dz) = MN
0 (dz0)

n∏
p=1

MN
p (zp−1; ap−1, dzp).

We also define GNp (zp) = 1
Np

∑
i∈[Np]

Gp(z
i
p) for p ∈ {0, . . . , n}. Let

QN1 (k, a,dz) = PN (a,dz)C1(a, z; k),

which specifies the probability measure associated with the random variables (K1, A, ζ) obtained by simulating
the particle system using Algorithm 1 and selecting K1as described in Section 3.1.

We now introduce the conditional particle filter construction of Andrieu et al. [2010]. Let −kp denote the
set [Np]\{kp}. We define z−kpp = (z1p, . . . , z

k−1
p , zk+1

p , . . . , zNp ), zk = (zk00 , . . . , zknn ) and z−k = (z−k00 , . . . , z−knn ),
only for the purpose of analysis. We define a variant ofMN

p in which one ancestor index and particle is excluded

M̄N
p,kp(zp−1; a

−kp
p−1 , dz

−kp
p ) =

∏
i∈[Np]\{kp}

Gp−1(z
aip−1

p−1 )Mp(z
aip−1

p−1 , dzip)∑
j∈[Np−1]

Gp−1(zjp−1)
,
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with M̄N
0,k0

(dz−k00 ) =
∏
i∈[N0]\{k0}M0(dzi0). With a fixed reference path zk in position k, we define the

conditional particle filter to be a Markov kernel defined by

P̄N1 (k, zk; a,dz−k) = M̄N
0,k0(dz−k00 )

n∏
p=1

{
M̄N
p,kp(zp−1; a

−kp
p−1 , dz

−kp
p )I

(
kp−1 = a

kp
p−1

)}
.

This specifies a particular distribution for the particle system excluding zk, and the ancestor indices conditional
upon k and zk. We also define the Feynman–Kac measure on the path space

γ
n
(A) =

ˆ
A

M0(dx0)

n∏
p=1

Gp−1(xp−1)Mp(xp−1, dxp), A ∈ X⊗n+1.

Finally,

Q̄N1 (k, a,dz) =
I (k ∈ [N0:n])

|[N0:n]|
γ
n
(dzk)

γn(1)
P̄N1 (k, zk; dz−k, a).

specifies the probability measure associated with an alternative distribution for (K1, A, ζ), where K1 is first
sampled uniformly from [N0:n], then ζK

1

∼ γ
n
(·)/γn(1) and finally (A, ζ−K

1

) ∼ P̄N1 (K1, ζK
1

; ·). We denote
by Ē1 expectations with respect to the law of this alternative process.

Proof of Lemma 1. The second equality in the statement of the lemma follows from the first since

E
{
γNn (ϕ)

}
= E

γNn (1)
1

Nn

∑
i∈[Nn]

ϕ(ζin)

 = E
{
γNn (1)ϕ(ζ

K1
n

n )
}

= γn(ϕ).

To establish the first equality in the statement of the lemma, it suffices to show that{
n−1∏
p=0

GNp (zp)

}
QN1 (k, a,dz) = γn(1)Q̄N1 (k, a,dz), (S4)

since it then follows that E
{
γNn (1)ϕ(ζ

K1
n

n )
}

= Ē1

{
γn(1)ϕ(ζ

K1
n

n )
}

= γn(ϕ). We observe that for any k ∈ [Np],

MN
p (zp−1; ap−1, dzp) =

Gp−1(z
akp−1

p−1 )Mp(z
akp−1

p−1 , zkp )∑
j∈[Np−1]

Gp−1(zjp−1)
M̄N
p,k(zp−1; a−kp−1, dz

−k
p ).

Hence, {
n−1∏
p=0

GNp (zp)

}
QN1 (k, a,dz) =

{
n−1∏
p=0

GNp (zp)

}
PN (a,dz)C1(a, z; k)

=
1

Nn

{
n−1∏
p=0

GNp (zp)

}
MN

0 (dz0)

n∏
p=1

MN
p (zp−1; ap−1, dzp)I

(
kp−1 = a

kp
p−1

)

=
1

Nn

{
n−1∏
p=0

GNp (zp)

}{
M̄N

0,k0(dz−k00 )

n∏
p=1

M̄N
p,kp(zp−1; ap−1, dz

−kp
p )I

(
kp−1 = a

kp
p−1

)}

·M0(dzk00 )

n∏
p=1

Gp−1(z
kp−1

p−1 )Mp(z
kp−1

p−1 , dz
kp
p )

Np−1Gp−1(zp)

=
1

|[N0:n]|

{
M̄N

0,k0(dz−k00 )

n∏
p=1

M̄N
p,kp(zp−1; ap−1, dz

−kp
p )I

(
kp−1 = a

kp
p−1

)}

·M0(dzk00 )

n∏
p=1

Gp−1(z
kp−1

p−1 )Mp(z
kp−1

p−1 ,dz
kp
p )

=
1

|[N0:n]| P̄
N
1 (k, zk; a,dz−k)γ

n
(dzk) = γn(1)Q̄N1 (k, a,dz).
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S5.2 Doubly conditional particle filters and proof of Lemma 2
The structure of the proof of Lemma 2 is very similar to the structure of the proof of Lemma 1. Let

QN2 (k1:2, a, dz) = PN (a,dz)C(a, z; k1:2),

which specifies the probability measure associated with the random variables (K1:2, A, ζ) obtained by simu-
lating the particle system using Algorithm 1 and selecting (K1,K2) as described in Section 3.1. We define
M̄N

0,k1:20
(dz
−k1:20
0 ) =

∏
i∈[N0]\{k1:20 }

M0(dzi0),

M̄N
p,k1:2p

(zp−1; a
−k1:2p

p−1 , dz
−k1:2p
p ) =

∏
i∈[Np]\{k1:2p }

Gp−1(z
aip−1

p−1 )Mp(z
aip−1

p−1 ,dzip)∑N
j∈[Np−1]

Gp−1(zjp−1)
,

and the Markov kernel associated with a doubly conditional particle filter as

P̄N2 (k1:2, zk
1:2

; a,dz−k
1:2

) = M̄N
0,k1:20

(dz
−k1:20
0 )

{
n∏
p=1

M̄N
p,k1:2p

(zp−1; a
−k1:2p

p−1 , dz
−k1:2p
p )

}

·
n∏
p=1

I(k1p−1 = a
k1p
p−1)

{
I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+ I
(
k2p = k1p

)}
.

A doubly conditional particle filter was also used in Andrieu et al. [2016], but for a different purpose. We also
define the path space counterpart for each µb, b ∈ Bn, by

µ
b
(A) =

ˆ
A

M̃b0
0 (dx1:20 )

n∏
p=1

G̃p−1(x1:2p−1)M̃
bp
p (x1:2p−1,dx

1:2
p ), A ∈ X⊗2n+2,

Finally, we define

Q̄N2 (k1:2, a, dz) =
I
(
k1:2 ∈ [N0:n]2

)
|[N0:n]|2

µ
φ(k1:2)

(dzk
1:2

)

µφ(k1:2)(1)
P̄N2 (k1:2, zk

1:2

; a,dz−k
1:2

),

where φ : [N0:n]2 → Bn maps (k1, k2) to the unique b ∈ Bn such that (k1, k2) ∈ I(b). Q̄N2 specifies the
probability measure associated with an alternative distribution for (K1:2, A, ζ), where K1:2 is first sampled
uniformly from [N0:n]2, then ζK

1:2

∼ µ
φ(K1:2)

(·)/µφ(K1:2)(1) and finally (A, ζ−K
1:2

) ∼ P̄N2 (K1:2, ζK
1:2

; ·). We
denote by Ē2 expectations with respect to the law of this alternative process.

Proof of Lemma 2. The proof of (8)⇒(9) is relatively straightforward so we present that first:

E
{
γNn (ϕ)2

}
= E

γNn (1)2

 1

Nn

∑
i∈[Nn]

ϕ(ζin)


2

= E

γNn (1)2
1

N2
n

∑
i,j∈[Nn]

ϕ(ζin)ϕ(ζjn)


= E

{
γNn (1)2ϕ(ζ

K1
n

n )ϕ(ζ
K2

n
n )

}
= E

[∑
b∈Bn

I
{

(K1,K2) ∈ I(b)
}
γNn (1)2ϕ(ζ

K1
n

n )ϕ(ζ
K2

n
n )

]

=
∑
b∈Bn

E
[
I
{

(K1,K2) ∈ I(b)
}
γNn (1)2ϕ(ζ

K1
n

n )ϕ(ζ
K2

n
n )

]

=
∑
b∈Bn

{
n∏
p=0

(
1

Np

)bp (
1− 1

Np

)1−bp
}
µb(ϕ

⊗2),
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where the final equality is due to (8). To complete the proof of the Lemma it remains to establish (8). For
this it suffices to show that{

n−1∏
p=0

GNp (zp)

}2

QN2 (k1:2, a, dz) = µφ(k1:2)(1)Q̄N2 (k1:2, a, dz),

since it then follows that for any b ∈ Bn,

E
[
I
{

(K1,K2) ∈ I(b)
}
γNn (1)2ϕ(ζ

K1
n

n , ζ
K2

n
n )

]
= Ē2

[
I
{

(K1,K2) ∈ I(b)
}
µb(1)ϕ(ζ

K1
n

n , ζ
K2

n
n )

]
=

(
1

|[N0:n]|

)2 ∑
k1,k2∈I(b)

µb(ϕ)

=

n∏
p=0

(
1

Np

)bp (
1− 1

Np

)1−bp
µb(ϕ),

where the last equality follows from the fact that |I(b)| =
∏n
p=0Np (Np − 1)1−bp .

We first note that by application of (S4),{
n−1∏
p=0

GNp (zp)

}2

QN2 (k1:2, a, dz) =

{
n−1∏
p=0

GNp (zp)

}2

QN1 (k1, a, dz)C2(a, z, k1; k2)

=

{
n−1∏
p=0

GNp (zp)

}
γn(1)Q̄N1 (k1:2, a, dz)C2(a, z, k1; k2).

We then observe that for any k1, k2 ∈ [N0:n] and zk
1

∈ Xn+1, we have

P̄N1 (k1, zk
1

; a,dz−k
1

)

n∏
p=1

{
I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+ I
(
k2p = k1p

)}

=

{
M̄N

0,k10
(dz
−k10
0 )

n∏
p=1

M̄N
p,k1p

(zp−1; a
−k1p
p−1 , dz

−k1p
p )

}

·
n∏
p=1

I(k1p−1 = a
k1p
p−1)

{
I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+ I
(
k2p = k1p

)}

=

{
M̄N

0,k1:20
(dz
−k1:20
0 )

n∏
p=1

M̄N
p,k1:2p

(zp−1; a
−k1:2p

p−1 , dz
−k1:2p
p )

}

·
n∏
p=0

I
(
k2p 6= k1p

) Gp−1(z
k2p−1

p−1 )Mp(z
k2p−1

p−1 ,dz
k2p
p )

Np−1Gp−1(zp−1)
+ I
(
k2p = k1p

)
·

n∏
p=1

I(k1p−1 = a
k1p
p−1)

{
I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+ I
(
k2p = k1p

)}

= P̄N2 (k1:2, zk
1:2

; a,dz−k
1:2

)

n∏
p=0

I
(
k2p 6= k1p

) Gp−1(z
k2p−1

p−1 )Mp(z
k2p−1

p−1 , dz
k2p
p )

Np−1Gp−1(zp−1)
+ I
(
k2p = k1p

) .
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It follows that{
n−1∏
p=0

GNp (zp)

}
γn(1)Q̄N1 (k1:2, a, dz)C2(a, z, k1; k2)

=

{
n−1∏
p=0

GNp (zp)

}
1

|[N0:n]|γn(dzk
1

)P̄N1 (k1, zk
1

; a,dz−k
1

)C2(a, z, k1; k2)

=
1

|[N0:n]|

{
n−1∏
p=0

GNp (zp)

}
P̄N2 (k1:2, zk

1:2

; a,dz−k
1:2

)

·γ
n
(dzk

1

)

n∏
p=0

I
(
k2p 6= k1p

) Gp−1(z
k2p−1

p−1 )Mp(z
k2p−1

p−1 , dz
k2p
p )

Np−1Gp−1(zp−1)
+ I
(
k2p = k1p

)
· 1

Nn

n∏
p=1

I
(
k2p 6= k1p, k

2
p−1 = a

k2p
p−1

)
+ I
(
k2p = k1p

) Gp−1(z
k2p−1

p−1 )

Np−1Gp−1(zp−1)


=

(
1

|[N0:n]|

)2
{
M̃b0

0 (dx
k1:20
0 )

n∏
p=1

G̃p−1(x
k1:2p−1

p−1 )M̃
bp
p (x

k1:2p−1

p−1 , dx
k1:2p
p )

}
P̄N2 (k1:2, zk

1:2

; a,dz−k
1:2

)

=

(
1

|[N0:n]|

)2

µ
φ(k1:2)

(dzk
1:2

)P̄N2 (k1:2, zk
1:2

; a,dz−k
1:2

) = µφ(k1:2)(1)Q̄N2 (k1:2, a, dz).

S5.3 Proofs of Lemma 3 and Proposition 1
Proof of Lemma 3. To obtain the limit of Nvar

{
γNn (ϕ)/γn(1)

}
, first combine the equality E{γNn (ϕ)} = γn(ϕ)

from Lemma 1 and the expression for E{γNn (ϕ)2} in Lemma 2 to give

Nvar
{
γNn (ϕ)

}
= −γn(ϕ)2

n∑
p=0

N

dNcpe
+

n∑
p=0

µep(ϕ⊗2)
N

dNcpe
∏
q 6=p

(
1− 1

dNcqe

)
+O(N−1)

=

n∑
p=0

N

dNcpe

µep(ϕ⊗2)
∏
q 6=p

(
1− 1

dNcqe

)
− µ0n(ϕ⊗2)

+O(N−1).

Then divide through by γn(1)2 and take N → ∞. It remains to verify (11). For the remainder of the proof,
denote ϕ0 = ϕ− ηn(ϕ). Observe

ηNn (ϕ0)− γNn (ϕ0)

γn(1)
= ηNn (ϕ0)

{
1− γNn (1)

γn(1)

}
,

and so by Cauchy–Schwarz,

N1/2E

{∣∣∣∣ηNn (ϕ0)− γNn (ϕ0)

γn(1)

∣∣∣∣2
}1/2

= N1/2E

[∣∣∣∣ηNn (ϕ0)

{
1− γNn (1)

γn(1)

}∣∣∣∣2
]1/2

≤ N1/2E

{∣∣∣ηNn (ϕ0)
∣∣∣4}1/4

E

{∣∣∣∣1− γNn (1)

γn(1)

∣∣∣∣4
}1/4

→ 0, as N →∞, (S5)

where the convergence to zero is a consequence of Lemma 8. Rearranging Minkowski’s inequality gives for any
random variables X,Y , E

{
(X − Y )2

}1/2 ≥ ∣∣∣E (X2
)1/2 − E (Y 2

)1/2∣∣∣, so the convergence in (S5) implies∣∣∣∣∣∣N1/2E
{
ηNn (ϕ0)2

}1/2

−N1/2E

[{
γNn (ϕ0)

γn(1)

}2
]1/2∣∣∣∣∣∣→ 0, as N →∞, (S6)
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so limN→∞NE
{
ηNn (ϕ0)2

}
= limN→∞NE

[{
γNn (ϕ0)/γn(1)

}2]. The proof is completed by noting that E
[{
γNn (ϕ0)/γn(1)

}2]
=

var
{
γNn (ϕ0)/γn(1)

}
.

Proof of Proposition 1. Part 1. holds by Lemma 1. The almost sure convergence in parts 2. and 3. follows
from Lemma 8 and the Borel–Cantelli Lemma. The convergence to the asymptotic variances in parts 2. and
3. holds by Lemma 3.

S6 Supporting results and proof of Theorem 2

S6.1 Definitions and supporting lemmas
We first introduce a regularity result on randomly weighted, random measures comprised of pairs of independent
and identically distributed particles.

Lemma 9. For each N ≥ 1, let (W i,j)i,j∈[N ] be a collection of possibly dependent non-negative random
variables. Assume this sequence of collections of random variables satisfies, for any probability measure ν on
X and bounded ϕ ∈ L(X⊗2),

sup
N
N1/2E


N−2

∑
i,j∈[N ]

W i,jϕ(ζi, ζj)− ν⊗2(ϕ)

2
1/2

< +∞,

where each ζi ∼ ν independently. Then, with S = {(i, j, i′, j′) ∈ [N ]4 : i′, j′ /∈ {i, j}},

sup
N
E

N−3
∑

(i,j,i′,j′)∈S{

W i,jW i′,j′

 < +∞.

Proof. Let ϕ(x, x′) = f(x) + f(x′), where ν and f are taken such that ν({x : f(x) = 1}) = ν({x : f(x) =
−1}) = 1/2. Since ν⊗2(ϕ) = 0, we have

sup
N
N1/2E


N−2

∑
i,j∈[N ]

W i,jϕ(ζi,j)

2
1/2

< +∞.

We observe that

E
{
ϕ(ζi, ζj)ϕ(ζi

′
, ζj
′
)
}

=E
{
f(ζi)f(ζi

′
)
}

+ E
{
f(ζi)f(ζj

′
)
}

+ E
{
f(ζj)f(ζi

′
)
}

+ E
{
f(ζj)f(ζj

′
)
}
,

so that in particular if (i, j, i′, j′) ∈ S{ then E(ϕ(ζi, ζj)ϕ(ζi
′
, ζj
′
)) ≥ 1. That is,

E

 1

N2

∑
i,j∈[N ]

W i,jϕ(ζi,j)


2 ≥ E

 1

N4

∑
(i,j,i′,j′)∈S{

W i,jW i′,j′

 .

The result then follows from

sup
N
E

 1

N3

∑
(i,j,i′,j′)∈S{

W i,jW i′,j′


1/2

= sup
N
N1/2E

 1

N4

∑
(i,j,i′,j′)∈S{

W i,jW i′,j′


1/2

≤ sup
N
N1/2E

{(
1

N2

∑
i,j

W i,jϕ(ζi,j)

)2}1/2

< +∞.
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We recall the definition of µb0:p for p ∈ {0, , . . . , n} in Section S1, noting that it defines a Feynman–Kac
model on X⊗2, and define

Q̃
bp
p (x1:2p−1,dx

1:2
p ) = G̃p−1(x1:2p−1)M̃

bp
p (x1:2p−1,dx

1:2
p ), p ≥ 1.

Our analysis involves an induction argument on the number of time steps in the model defined by b and
(M̃

bp
p , G̃p)p∈{0,...,n}, where we allow (Mp, Gp)p∈{0,...,n} to be arbitrary with G0, . . . , Gn a sequence of R-valued,

strictly positive, upper-bounded functions. We define

FNb0 (i0, j0) = I(b0 = 0, i0 6= j0)
N0

N0 − 1
+ I(b0 = 1, i0 = j0)N0,

and for p ≥ 1,

FNb0:p(ip, jp) = I(bp = 0, ip 6= jp)
Np

Np − 1
FNb0:p−1

(A
ip
p−1, A

jp
p−1)

+I(bp = 1, ip = jp)Np

Np−1∑
jp−1=1

FNb0:p−1
(A

ip
p−1, jp−1)

Gp−1(ζ
jp−1

p−1 )∑Np−1

j=1 Gp−1(ζjp−1)
. (S7)

For each p we have

µNb0:p(ϕ) = γNp (1)2
∑

ip,jp∈[Np]

1

N2
p

FNb0:p(ip, jp)ϕ(ζ
ip,jp
p ) =

∑
ip,jp∈[Np]

1

N2
p

W
ip,jp
p δ

ζ
ip,jp
p

, (S8)

whereW ip,jp
p = γNp (1)2FNb0:p(ip, jp). Let Fp = σ(A0, . . . , Ap−1, ζ0, . . . , ζp), p ≥ 1 and F0 = σ(ζ0). We show that

if µNb0:p−1
(ϕ) approximates µb0:p−1(ϕ) at a N−1/2 rate for any ϕ ∈ L(X⊗2) then µNb0:p(ϕ) approximates µb0:p(ϕ)

at a N−1/2 rate for any ϕ ∈ L(X⊗2). The first step is to in the following Lemma that a mean-square error
bound for µNb0:p−1

(ϕ) implies that the random variables W i,j
p−1 necessarily satisfy a certain regularity condition.

Lemma 10. If, for any (Mq, Gq)q∈{0,...,p−1} and any ϕ ∈ L(X⊗2),

sup
N
N1/2E

[{
µNb0:p−1

(ϕ)− µb0:p−1(ϕ)
}2
]1/2

<∞,

then, with Sp−1 = {(i, j, i′, j′) ∈ [Np−1]4 : i′, j′ /∈ {i, j}},

sup
N
E

N−3
p−1

∑
(i,j,i′,j′)∈S{

p−1

W i,j
p−1W

i′,j′

p−1

 < +∞.

Proof. Let Mp−1(x, ·) = ν(·) for every x ∈ X, where ν is an arbitrary probability measure. Consider the
expression for µNb0:p−1

(ϕ) in (S8), and note from (S7) thatW i,j
p−1 is measurable with respect to σ(A0:p−2, ζ0:p−2).

This allows us to apply Lemma 9 to obtain the result.

Lemmas 11 and 12 together provide important bounds used in the proof of Proposition 3 below. Their
proofs involve mainly tedious manipulations involving properties of multinomial random variables, and can be
found in Section S6.4. The analysis that follows makes use of the offspring indices defined by (S3).

Lemma 11. With E
{

∆N
p,bp(ip−1, jp−1) | Fp−1

}
= 0,

µNb0:p(ϕ)− µNb0:p−1
(Q̃

bp
p (ϕ)) =

∑
ip−1,jp−1∈[Np−1]

1

N2
p−1

W
ip−1,jp−1

p−1 ∆N
p,bp(ip−1, jp−1), (S9)

where

∆N
p,0(ip−1, jp−1) =


{∑Np−1

j=1 Gp−1(ζjp)
}2

Np(Np − 1)

∑
(ip,jp)∈O

ip−1
p−1 ×O

jp−1
p−1

I(ip 6= jp)ϕ(ζ
ip,jp
p )

− Q̃bpp (ϕ)(ζ
ip−1,jp−1

p−1 ),
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and

∆N
p,1(ip−1, jp−1) =

Gp−1(ζ
jp−1

p−1 )

∑Np−1

j=1 Gp−1(ζjp−1)

Np

∑
ip∈O

ip−1
p−1

ϕ(ζ
ip,ip
p )

− Q̃bpp (ϕ)(ζ
ip−1,jp−1

p−1 ).

Lemma 12. Let ϕ ∈ L(X⊗2) be non-negative, and Sp−1 := {(i, j, i′, j′) ∈ [Np−1]4 : i′, j′ /∈ {i, j}}. Then,

1. For any (ip−1, jp−1, i
′
p−1, j

′
p−1) ∈ Sp−1 ∩ I(bp−1)2,

E
{

∆N
p,bp(ip−1, jp−1)∆N

p,bp(i′p−1, j
′
p−1) | Fp−1

}
≤ 0.

2. There exists C <∞ such that

E
{

∆N
p,bp(ip−1, jp−1)∆N

p,bp(i′p−1, j
′
p−1) | Fp−1

}
≤ C,

for any (ip−1, jp−1, i
′
p−1, j

′
p−1) ∈ S{

p−1 ∩ I(bp−1)2.

S6.2 Proof of the theorem
The following proposition constitutes the inductive step in the proof of Theorem 2.

Proposition 3. If, for any (Mq, Gq)q∈{0,...,p−1} and ϕ ∈ L(X⊗2),

sup
N
N1/2E

[{
µNb0:p−1

(ϕ)− µb0:p−1(ϕ)
}2
]1/2

<∞.

Then, for any (Mq, Gq)q∈{0,...p} and ϕ ∈ L(X⊗2),

sup
N
N1/2E

[{
µNb0:p(ϕ)− µb0:p(ϕ)

}2
]1/2

<∞.

Proof. We decompose ϕ into its positive and negative parts. That is ϕ = ϕ+ − ϕ−, where ϕ+(x1:2) =
max{0, ϕ(x1:2)} and ϕ−(x1:2) = |min{0, ϕ(x1:2)}|. We can therefore write

E

[{
µNb0:p(ϕ)− µNb0:p−1

(Q̃
bp
p (ϕ))

}2
]1/2

= E

[{
µNb0:p(ϕ+)− µNb0:p−1

(Q̃
bp
p (ϕ+)) + µNb0:p−1

(Q̃
bp
p (ϕ−))− µNb0:p(ϕ−)

}2
]1/2

≤ E

[{
µNb0:p(ϕ+)− µNb0:p−1

(Q̃
bp
p (ϕ+))

}2
]1/2

+ E

[{
µNb0:p−1

(Q̃
bp
p (ϕ−))− µNb0:p(ϕ−)

}2
]1/2

,

by application of Minkowski’s inequality. We bound the first term. It follows from Lemmas 11 and 12 that

E

[{
µNb0:p(ϕ+)− µNb0:p−1

(Q̃
bp
p (ϕ+))

}2
]

= E

 ∑
i,j∈[Np−1]

1

N2
p−1

W i,j
p−1∆N

p,bp(i, j)


2

= E

 ∑
i,j,i′,j′∈[Np−1]

1

N4
p−1

W i,j
p−1W

i′,j′

p−1 ∆N
p,bp(i, j)∆N

p,bp(i′, j′)


= E

 ∑
i,j,i′,j′∈[Np−1]

1

N4
p−1

W i,j
p−1W

i′,j′

p−1 E
{

∆N
p,bp(i, j)∆N

p,bp(i′, j′) | Fp−1

}
≤ CE


∑

(i,j,i′,j′)∈S{
p−1

1

N4
p−1

W i,j
p−1W

i′,j′

p−1

 ≤ C

Np−1
E


∑

(i,j,i′,j′)∈S{
p−1

1

N3
p−1

W i,j
p−1W

i′,j′

p−1

 .
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It then follows from Lemma 10 that

sup
N
N1/2E

[{
µNb0:p(ϕ+)− µNb0:p−1

(Q̃
bp
p (ϕ+))

}2
]1/2

< +∞,

and an identical argument shows that

sup
N
N1/2E

[{
µNb0:p(ϕ−)− µNb0:p−1

(Q̃
bp
p (ϕ−))

}2
]1/2

< +∞,

so

sup
N
N1/2E

[{
µNb0:p(ϕ)− µNb0:p−1

(Q̃
bp
p (ϕ))

}2
]1/2

< +∞. (S10)

Now, ϕ ∈ L(X⊗2) implies Q̃bpp (ϕ) ∈ L(X⊗2) because Gp−1 is bounded, and since µb0:p−1(Q̃
bp
p (ϕ)) = µb0:p(ϕ)

we have by the hypothesis in the statement

sup
N
N1/2E

[{
µNb0:p−1

(Q̃
bp
p (ϕ))− µb0:p(ϕ)

}2
]1/2

< +∞. (S11)

Therefore, (S10), (S11) and Minkowski’s inequality together imply the result.

Proof of Theorem 2. For part 1. of the theorem, let Cb =
∏n
p=0 (Np)

bp {Np/ (Np − 1)}1−bp , which is finite by
the assumption that minpNp ≥ 2. By applying Lemma 2,

C−1
b E

{
µNb (ϕ)

}
= E

{
γNn (1)2I

{
(K1,K2) ∈ I(b)

}
ϕ(ζ

K1
n

n , ζ
K2

n
n )

}
= C−1

b µb(ϕ).

The proof of part 2. of the theorem is by induction on n. In the case n = 0 we obtain,

µNb0(ϕ) =
1

N2
0

∑
i,j∈[N0]

W i,j
0 ϕ(ζi,j0 ) =

1

N2
0

∑
(i,j)∈I(b0)

Nb0
0

(
N0

N0 − 1

)1−b0
ϕ(ζi,j0 )

=
∑

(i,j)∈I(b0)

1

|I(b0)|ϕ(ζi,j0 ).

Let ϕ̄(x1, x2) = ϕ(x1, x2) − µb0(ϕ), and ||ϕ̄|| := supx |ϕ̄(x)|. We observe that E
[{
µNb0(ϕ)− µb0(ϕ)

}2]
=

E
{
µNb0(ϕ̄)2

}
. In the case b0 = 1, we have

E

[{
µNb0(ϕ)− µb0(ϕ)

}2
]

= E

 ∑
i∈[N0]

1

N2
0

ϕ̄(ζi,i0 )2

 =
1

N0
E
{
ϕ̄(X0, X0)2

}
≤ 1

N0
||ϕ̄||,

so supN N
1/2E

[{
µNb0(ϕ)− µb0(ϕ)

}2]1/2
< +∞ for any ϕ ∈ L(X⊗2). In the case b0 = 0, we obtain

E

[{
µNb0(ϕ)− µb0(ϕ)

}2
]

= E

 ∑
i6=j∈[N0]

∑
i′ 6=j′∈[N0]

1

N2
0 (N0 − 1)2

ϕ̄(ζi,j0 )ϕ̄(ζi
′,j′

0 )


= E


∑

(i,j,i′,j′)∈S{
0∩I(b0)

1

N2
0 (N0 − 1)2

ϕ̄(ζi,j0 )ϕ̄(ζi
′,j′

0 )


≤ ||ϕ̄||2 |S

{
0 ∩ I(b0)|

N2
0 (N0 − 1)2

= ||ϕ̄||2 4N0(N0 − 1)(N0 − 2) + 2N0(N0 − 1)

N2
0 (N0 − 1)2

≤ ||ϕ̄||2 4(N0 − 2) + 2

N0(N0 − 1)
≤ 4||ϕ̄||2

N0
,

so supN N
1/2E

[{
µNb0(ϕ)− µb0(ϕ)

}2]1/2
< +∞ for any ϕ ∈ L(X⊗2). The result then follows by applying

Proposition 3 multiple times.
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S6.3 Properties of multinomial random variables
All the results in Lemmas 13–15 can be obtained, after fairly tedious but straightforward calculations, using
the moment generating function of a Multinomial(n, p1, . . . , pk) random variable X, MX(t) =

(∑k
i=1 pie

ti
)n

,

and the fact that E
(∏m

j=1Xij

)
= ∂mMX

∂ti1 ···∂tim
(0).

Lemma 13. Let (X1, . . . , Xk) be a Multinomial(n, p1, . . . , pk) random variable. Then

1. For any i ∈ [k], E(Xi) = npi.

2. For distinct i, j ∈ [k], E(XiXj) = n(n− 1)pipj.

3. For any i ∈ [k], E {Xi(Xi − 1)} = n(n− 1)p2i .

Lemma 14. Let (X1, . . . , Xk) be a Multinomial(n, p1, . . . , pk) random variable. Then

1. For distinct i1, i2, i3, i4 ∈ [k],

E (Xi1Xi2Xi3Xi4) =
n!

(n− 4)!

4∏
j=1

pij ≤ n
2(n− 1)2

4∏
j=1

pij = E (Xi1Xi2)E (Xi3Xi4) .

2. For distinct i, j ∈ [k],

E{Xi(Xi − 1)Xj(Xj − 1)} = n(n− 1)(n− 2)(n− 3)p2i p
2
j

≤ n2(n− 1)2p2i p
2
j = E{Xi(Xi − 1)}E{Xj(Xj − 1)}.

Lemma 15. Let (X1, . . . , Xk) be a Multinomial(n, p1, . . . , pk) random variable. Then

1. For any i ∈ [k], E
(
X2
i

)
= n(n− 1)p2i + npi.

2. For any i ∈ [k],

E
{
X2
i (Xi − 1)2

}
= n(n− 1)(n− 2)(n− 3)p4i + 4n(n− 1)(n− 2)p3i + 2n(n− 1)p2i .

3. For distinct i1, i2, i3 ∈ [k],

E
{
X2
i1Xi2Xi3

}
= n(n− 1)(n− 2)(n− 3)p2i1pi2pi3 + n(n− 1)(n− 2)pi1pi2pi3 .

4. For distinct i1, i2 ∈ [k],

E
(
X2
i1X

2
i2

)
= n(n− 1)(n− 2)(n− 3)p2i1p

2
i2 + n(n− 1)(n− 2)(p2i1pi2 + pi1p

2
i2) + n(n− 1)pi1pi2 .

Lemma 16. Let (X1, . . . , Xk) be a Multinomial(n, p1, . . . , pk) random variable where pi = S−1gi, k/n ≤ c and
n > 4. Then there exists a constant C <∞ such that, with ḡ := maxi∈{1,...,k} gi,

1. For any i ∈ [k], E
(
S2X2

i /n
2
)
≤ g2i + Cḡ2.

2. For any i ∈ [k], E
{
S4X2

i (Xi − 1)2/n4
}
≤ g4i + Cḡ4.

3. For distinct i1, i2, i3 ∈ [k], E
[
S4X2

i1Xi2Xi3/
{
n2(n− 1)2

}]
≤ g2i1gi2gi3 + Cḡ4.

4. For distinct i1, i2 ∈ [k], E
[
S4X2

i1X
2
i2/
{
n2(n− 1)2

}]
≤ g2i1g

2
i2 + Cḡ4.

Proof. We use the properties from Lemma 15. For part 1.,

E

(
S2

n2
X2
i

)
=
S2

n2

{
n(n− 1)p2i + npi

}
≤ g2i +

S

n
gi ≤ g2i +

k

n
ḡ2.

14



For part 2.,

E

{
S4

n2(n− 1)2
X2
i (Xi − 1)2

}
=

S4

n2(n− 1)2
{
n(n− 1)(n− 2)(n− 3)p4i + 4n(n− 1)(n− 2)p3i + 2n(n− 1)p2i

}
≤ g4i +

4S(n− 2)

n(n− 1)
g3i +

2S2

n(n− 1)
g2i ≤ g4i +

4k

n
ḡ4 + 2

k2

n(n− 1)
ḡ4 ≤ g4i + 4cḡ4 + 2c2

n

n− 1
ḡ4.

For part 3.,

E

{
S4

n2(n− 1)2
X2
i1Xi2Xi3

}
=

S4

n2(n− 1)2
{
n(n− 1)(n− 2)(n− 3)p2i1pi2pi3 + n(n− 1)(n− 2)pi1pi2pi3

}
≤ g2i1gi2gi3 +

S(n− 2)

n(n− 1)
gi1gi2gi3 ≤ g

2
i1gi2gi3 + cḡ4.

For part 4.,

E

{
S4

n2(n− 1)2
X2
i1X

2
i2

}
=

S4

n2(n− 1)2
{
n(n− 1)(n− 2)(n− 3)p2i1p

2
i2 + n(n− 1)(n− 2)(p2i1pi2 + pi1p

2
i2) + n(n− 1)pi1pi2

}
≤ g2i1g

2
i2 +

S(n− 2)

n(n− 1)
(g2i1gi2 + gi1g

2
i2) +

S2

n(n− 1)
gi1gi2 ≤ g

2
i1g

2
i2 + cḡ4 + c2

n

n− 1
ḡ4.

The result follows by taking C = 4c+ 4
3
· 2c2 since n

n−1
≤ 4

3
.

Corollary 2. Assume supx∈XGp−1(x) <∞ and (i, j, i′, j′) ∈ S{
p−1 ∩ I(bp−1)2. Then there exists C <∞ such

that for any Np, Np−1 ∈ N and ζp−1 ∈ XNp−1 ,

E


{∑Np−1

k=1 Gp−1(ζkp−1)
}4

N2
p (Np − 1)2

|Oip−1|
{
|Ojp−1| − I(i = j)

}
|Oi
′
|
{
|Oj
′
| − I(i′ = j′)

}
| Fp−1

 ≤ C,
and

Gp−1(ζjp−1)Gp−1(ζj
′

p−1)E


{∑Np−1

k=1 Gp−1(ζkp−1)
}2

N2
p

|Oip−1||Oi
′
p−1| | Fp−1

 ≤ C.
Proof. Let k = Np−1, n = Np, S =

∑Np−1

j=1 Gp−1(ζjp−1) and (X1, . . . , Xk) be a Multinomial(n, p1, . . . , pk)

random variable where pi = S−1Gp−1(ζip−1) and n > 4. For the first expression, consider the case i = j. Then
the expression can be written as

E

{
S4

n2(n− 1)2
X2
i (Xi − 1)2

}
,

and we conclude by combining part 2. of Lemma 16 with supx∈XGp−1(x) <∞. Now consider the case i 6= j.
Then the expression can be written as either

E

{
S4

n2(n− 1)2
X2
iX

2
j

}
, or E

{
S4

n2(n− 1)2
X2
i1Xi2Xi3

}
,

and we conclude by combining parts 3. and 4. of Lemma 16 with supx∈XGp−1(x) <∞. The second expression
can be bounded by

{
supx∈XGp−1(x)

}2
E
(
S2X2

i /n
2
)
and we conclude by combining the part 1. of Lemma 16

with supx∈XGp−1(x) <∞.
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S6.4 Expressions and bounds for ∆N
p,bp

Proof of Lemma 11. We obtain expressions for ∆N
p,bp for each of the cases bp ∈ {0, 1}, making use of (S7). In

the case bp = 0, we have

µNb0:p(ϕ) = γNp (1)2
∑

ip,jp∈[Np]

1

N2
p

FNb0:p(ip, jp)ϕ(ζ
ip,jp
p )

= γNp−1(1)2
∑

ip−1,jp−1∈[Np−1]

1

N2
p−1

FNb0:p−1
(ip−1, jp−1)

{∑Np−1

j=1 Gp−1(ζjp−1)
}2

Np(Np − 1)

∑
(ip,jp)∈O

ip−1
p−1 ×O

jp−1
p−1

I(ip 6= jp)ϕ(ζ
ip,jp
p )

=
∑

ip−1,jp−1∈[Np−1]

1

N2
p−1

W
ip−1,jp−1

p−1

{∑Np−1

j=1 Gp−1(ζjp−1)
}2

Np(Np − 1)

∑
(ip,jp)∈O

ip−1
p−1 ×O

jp−1
p−1

I(ip 6= jp)ϕ(ζ
ip,jp
p ),

from which the expression for ∆N
p,0(ip−1, jp−1) follows. We have

E


{∑Np−1

j=1 Gp−1(ζjp−1)
}2

Np(Np − 1)

∑
(ip,jp)∈O

ip−1
p−1 ×O

jp−1
p−1

I(ip 6= jp)ϕ(ζ
ip,jp
p ) | Fp−1


= E


{∑Np−1

j=1 Gp−1(ζjp−1)
}2

Np(Np − 1)
|Oip−1

p−1 |
(
|Ojp−1

p−1 | − I{ip−1 = jp−1}
)
M̃

bp
p (ϕ)(ζ

ip−1,jp−1

p−1 ) | Fp−1


= G̃p−1(ζ

ip−1,jp−1

p−1 )M̃
bp
p (ϕ)(ζ

ip−1,jp−1

p−1 ),

where the last line follows from Lemma 13. Hence E
{

∆N
p,0(ip−1, jp−1) | Fp−1

}
= 0.

In the case bp = 1, we have

µNb0:p(ϕ) = γNp (1)2
∑

ip,jp∈[Np]

1

N2
p

FNb0:p(ip, jp)ϕ(ζ
ip,jp
p )

= γNp (1)2
∑

ip∈[Np]

1

N2
p

FNb0:p(ip, ip)ϕ(ζ
ip,ip
p )

= γNp−1(1)2
∑

ip−1,jp−1∈[Np−1]

1

N2
p−1

FNb0:p−1
(ip−1, jp−1)Gp−1(ζ

jp−1

p−1 )

∑Np−1

j=1 Gp−1(ζjp−1)

Np

∑
ip∈O

ip−1
p−1

ϕ(ζ
ip,ip
p )

=
∑

ip−1,jp−1∈[Np−1]

1

N2
p−1

W
ip−1,jp−1

p−1 Gp−1(ζ
jp−1

p−1 )

∑Np−1

j=1 Gp−1(ζjp−1)

Np

∑
ip∈O

ip−1
p−1

ϕ(ζ
ip,ip
p ),

from which the expression for ∆N
p,1(ip−1, jp−1) follows. We have

E

Gp−1(ζ
jp−1

p−1 )

∑Np−1

j=1 Gp−1(ζjp−1)

Np

∑
ip∈O

ip−1
p−1

ϕ(ζ
ip,ip
p ) | Fp−1


= Gp−1(ζ

jp−1

p−1 )E

{∑Np−1

j=1 Gp−1(ζjp−1)

Np
|Oip−1

p−1 |M̃
bp
p (ϕ)(ζ

ip−1,jp−1

p−1 ) | Fp−1

}
= G̃p−1(ζ

ip−1,jp−1

p−1 )M̃
bp
p (ϕ)(ζ

ip−1,jp−1

p−1 ),

where the last line follows from Lemma 13. Hence E
{

∆N
p,1(ip−1, jp−1) | Fp−1

}
= 0.
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Proof of Lemma 12. For the first part, consider first the case bp = 0. Then, since (ip−1, jp−1, i
′
p−1, j

′
p−1) ∈

Sp−1 ∩ I(bp−1)2,

E
{

∆N
p,0(ip−1, jp−1)∆N

p,0(i′p−1, j
′
p−1) | Fp−1

}

= E


{∑Np−1

j=1 Gp−1(ζjp)
}4

N2
p (Np − 1)2

∑
(i,j)∈O

ip−1
p−1 ×O

jp−1
p−1

I(i 6= j)ϕ(ζi,jp )
∑

(i′,j′)∈O
i′
p−1

p−1 ×O
j′p−1
p−1

I(i′ 6= j′)ϕ(ζi
′,j′
p ) | Fp−1


−Q̃bpp (ϕ)(ζ

ip−1,jp−1

p−1 )Q̃
bp
p (ϕ)(ζ

i′p−1,j
′
p−1

p−1 )

= E


{∑Np−1

j=1 Gp−1(ζjp)
}4

N2
p (Np − 1)2

|Oip−1

p−1 |
(
O
jp−1

p−1 − I{ip−1 = jp−1}
)
|Oi
′
p−1

p−1 |
(
|Oj
′
p−1

p−1 | − I{i′p−1 = j′p−1}
)
| Fp−1


·M̃bp

p (ϕ)(ζ
ip−1,jp−1

p−1 )M̃
bp
p (ϕ)(ζ

i′p−1,j
′
p−1

p−1 )− Q̃bpp (ϕ)(ζ
ip−1,jp−1

p−1 )Q̃
bp
p (ϕ)(ζ

i′p−1,j
′
p−1

p−1 )

=

E

{∑Np−1

j=1 Gp−1(ζjp)
}4

N2
p (Np − 1)2

|Oip−1

p−1 |
(
O
jp−1

p−1 − I{ip−1 = jp−1}
)
|Oi
′
p−1

p−1 |
(
|Oj
′
p−1

p−1 | − I{i′p−1 = j′p−1}
)
| Fp−1


−G̃p−1(ζ

ip−1,jp−1

p−1 )G̃p−1(ζ
i′p−1,j

′
p−1

p−1 )

 · M̃bp
p (ϕ)(ζ

ip−1,jp−1

p−1 )M̃
bp
p (ϕ)(ζ

i′p−1,j
′
p−1

p−1 )

≤ 0,

where the final inequality follows from properties in Lemma 14. Now, in the case bp = 1, and again because
(ip−1, jp−1, i

′
p−1, j

′
p−1) ∈ Sp−1 ∩ I(bp−1)2,

E
{

∆N
p,1(ip−1, jp−1)∆N

p,1(i′p−1, j
′
p−1) | Fp−1

}

= E

Gp−1(ζ
jp−1

p−1 )Gp−1(ζ
j′p−1

p−1 )

[∑Np−1

j=1 Gp−1(ζjp−1)
]2

N2
p

∑
i∈O

ip−1
p−1

ϕ(ζi,ip )
∑

i′∈O
i′
p−1

p−1

ϕ(ζi
′,i′
p ) | Fp−1


−Q̃bpp (ϕ)(ζ

ip−1,jp−1

p−1 )Q̃
bp
p (ϕ)(ζ

i′p−1,j
′
p−1

p−1 )

= E


{∑Np−1

j=1 Gp−1(ζjp−1)
}2

N2
p

|Oip−1

p−1 ||O
i′p−1

p−1 |
∣∣∣∣Fp−1

Gp−1(ζ
jp−1

p−1 )Gp−1(ζ
j′p−1

p−1 )

·M̃bp
p (ϕ)(ζ

ip−1,jp−1

p−1 )M̃
bp
p (ϕ)(ζ

i′p−1,j
′
p−1

p−1 )− Q̃bpp (ϕ)(ζ
ip−1,jp−1

p−1 )Q̃
bp
p (ϕ)(ζ

i′p−1,j
′
p−1

p−1 )

=

E

{∑Np−1

j=1 Gp−1(ζjp−1)
}2

N2
p

|Oip−1

p−1 ||O
i′p−1

p−1 |
∣∣∣∣Fp−1

−Gp−1(ζ
ip−1

p−1 )Gp−1(ζ
i′p−1

p−1 )


·Gp−1(ζ

jp−1

p−1 )Gp−1(ζ
j′p−1

p−1 )M̃
bp
p (ϕ)(ζ

ip−1,jp−1

p−1 )M̃
bp
p (ϕ)(ζ

i′p−1,j
′
p−1

p−1 )

≤ 0,

where the final inequality follows from properties in Lemma 14. For the second part, let ||ϕ|| = supx ϕ(x). In
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the case bp = 0 we have

E
[
∆N
p,bp(ip−1, jp−1)∆N

p,bp(i′p−1, j
′
p−1) | Fp−1

]

≤ E


[∑Np−1

j=1 Gp−1(ζjp)
]4

N2
p (Np − 1)2

∑
(i,j)∈O

ip−1
p−1 ×O

jp−1
p−1

I(i 6= j)ϕ(ζi,jp )
∑

(i′,j′)∈O
i′
p−1

p−1 ×O
j′
p−1

p−1

I(i′ 6= j′)ϕ(ζi
′,j′
p )

∣∣∣∣Fp−1



≤ ||ϕ||2E


[∑Np−1

j=1 Gp−1(ζjp)
]4

N2
p (Np − 1)2

|Oip−1

p−1 |
(
|Ojp−1

p−1 | − I{ip−1 = jp−1}
)
|Oi
′
p−1

p−1 |
(
|Oj
′
p−1

p−1 | − I{i′p−1 = j′p−1}
) ∣∣∣∣Fp−1


≤ C||ϕ||2,

by applying Corollary 2 to obtain the last inequality. Similarly, in the case bp = 1 we have

E
[
∆N
p,bp(ip−1, jp−1)∆N

p,bp(i′p−1, j
′
p−1) | Fp−1

]

≤ E

Gp−1(ζ
jp−1

p−1 )Gp−1(ζ
j′p−1

p−1 )

[∑Np−1

j=1 Gp−1(ζjp−1)
]2

N2
p

∑
i∈O

ip−1
p−1

ϕ(ζi,ip )
∑

i′∈O
i′
p−1

p−1

ϕ(ζi
′,i′
p ) | Fp−1



≤ ||ϕ||2Gp−1(ζ
jp−1

p−1 )Gp−1(ζ
j′p−1

p−1 )E


[∑Np−1

j=1 Gp−1(ζjp−1)
]2

N2
p

|Oip−1

p−1 ||O
i′p−1

p−1 | | Fp−1


≤ C||ϕ||2,

by applying Corollary 2 to obtain the last inequality.

S7 Proofs for Section 5
Lemma 17. For any ϕ ∈ L(X ) and r ≥ 1,

sup
N≥1

N1/2E
{∣∣∣γ̂Nn (ϕ)− γ̂n(ϕ)

∣∣∣r}1/r

<∞, sup
N≥1

N1/2E
{∣∣∣η̂Nn (ϕ)− η̂n(ϕ)

∣∣∣r}1/r

<∞.

Proof. Let ϕ̂(x) = Gn(x)ϕ(x). Since γ̂n(ϕ) = γn(ϕ̂), Lemma 8 provides the first bound. The second bound
follows from the first bound and Minkowski’s inequality by an essentially identical line of arguments as in the
proof of Lemma 8.

Proof of Proposition 2. The almost sure convergence in both parts follows from Lemma 17 and the Borel–
Cantelli Lemma. To obtain the expression for σ̂2

n(ϕ), we have

lim
N→∞

Nvar
{
γ̂Nn (ϕ)

}
= lim
N→∞

Nvar
{
γNn (ϕ̂)

}
= γn(1)2

n∑
p=0

vp,n(ϕ̂)

cp
= γ̂n(1)2

n∑
p=0

v̂p,n(ϕ)

cp
,

and the result is obtained by dividing by γ̂n(1)2. The expression for limN→∞NE
[{
η̂Nn (ϕ)− η̂n(ϕ)

}2] follows
by combining this with an essentially identical line of arguments as in the proof of Lemma 3.

Proof of Theorem 4. The results follow from Theorems 1 and 3. For the first part,

E
{
γ̂Nn (1)2V̂ Nn (ϕ)

}
= E

{
γNn (1)2V Nn (ϕ̂)

}
= var

{
γNn (ϕ̂)

}
= var

{
γ̂Nn (ϕ)

}
.

For the remainder of the proof, → denotes convergence in probability. For the second part, since σ̂2
n(ϕ) =

σ2
n(ϕ̂)/ηn(Gn)2, it follows thatNV̂ Nn (ϕ) = NV Nn (ϕ̂)/ηNn (Gn)2 → σ̂2

n(ϕ) sinceNV Nn (ϕ̂)→ σ2
n(ϕ̂) and ηNn (Gn)2 →

ηn(Gn)2. The third part holds by the same reasoning as in the proof of Theorem 1.
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Figure 9: Estimated asymptotic variances NV̂n(ϕ) (blue dots and error bars for the mean ± one
standard deviation) against log2N for the stochastic volatility example.

Proof of Theorem 5. For part 1.,

E
{
γ̂Nn (1)2v̂Np,n(ϕ)

}
= E

{
γNn (1)2vNp,n(ϕ̂)

}
= γn(1)2vp,n(ϕ̂) = γ̂n(1)2v̂p,n(ϕ).

For the remainder of the proof, → denotes convergence in probability. For part 2., we have v̂Np,n(ϕ) =

vNp,n(ϕ̂)/ηNn (Gn)2 → v̂p,n(ϕ) and letting f = ϕ−η̂n(ϕ) we obtain v̂Np,n(ϕ−η̂Nn (ϕ))→ vp,n(f̂)/ηn(Gn)2 = v̂p,n(f).
Part 3. follows from parts 1. and 2.

S8 Supplementary figures
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Figure 10: Plot of v̂Np,n(ϕ) (blue dots and error bars for the mean ± one standard deviation) at each
p ∈ {0, . . . , n} in the stochastic volatility example, with N = 105.
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Figure 11: Plots for the simple adaptive N particle filter estimates of γ̂n(1) for the stochastic volatility
example. Figure (a) plots the base 2 logarithm of the empirical variance of γ̂Nn (1)/γ̂n(1) against log2 δ,
with the straight line y = x. Figure (b) plots log2N against log2 δ, where N is the average number of
particles used by the final particle filter.
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Figure 12: Estimated asymptotic variances NV N
n (ϕ) (blue dots and error bars for the mean ± one

standard deviation) against log2N for the SMC sampler example.
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Figure 13: Plots for the simple adaptive N particle filter estimates of ηn(Id) for the SMC sampler
example. Figure (a) plots the base 2 logarithm of the squared L2 error of ηNn (Id) against log2 δ, with
the straight line y = x. Figure (b) plots log2N against log2 δ, where N is the average number of
particles used by the final particle filter.
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